Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Satu Kuure is active.

Publication


Featured researches published by Satu Kuure.


Nature Genetics | 2009

Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis.

Benson Lu; Cristina Cebrian; Xuan Chi; Satu Kuure; Richard Kuo; Carlton M. Bates; Silvia Arber; John A. Hassell; Lesley T. MacNeil; Masato Hoshi; Sanjay Jain; Naoya Asai; Masahide Takahashi; Kai M. Schmidt-Ott; Jonathan Barasch; Vivette D. D'Agati; Frank Costantini

Glial cell line–derived neurotrophic factor signaling through the Ret receptor tyrosine kinase is crucial for ureteric bud branching morphogenesis during kidney development, yet few of the downstream genes are known. Here we show that the ETS transcription factors Etv4 and Etv5 are positively regulated by Ret signaling in the ureteric bud tips. Mice lacking both Etv4 alleles and one Etv5 allele show either renal agenesis or severe hypodysplasia, whereas kidney development fails completely in double homozygotes. We identified several genes whose expression in the ureteric bud depends on Etv4 and Etv5, including Cxcr4, Myb, Met and Mmp14. Thus, Etv4 and Etv5 are key components of a gene network downstream of Ret that promotes and controls renal branching morphogenesis.


Nature Genetics | 2008

Mutations in mRNA export mediator GLE1 result in a fetal motoneuron disease

Heidi O Nousiainen; Marjo Kestilä; Niklas Pakkasjärvi; Heli Honkala; Satu Kuure; Jonna Tallila; Katri Vuopala; Jaakko Ignatius; Riitta Herva; Leena Peltonen

The most severe forms of motoneuron disease manifest in utero are characterized by marked atrophy of spinal cord motoneurons and fetal immobility. Here, we report that the defective gene underlying lethal motoneuron syndrome LCCS1 is the mRNA export mediator GLE1. Our finding of mutated GLE1 exposes a common pathway connecting the genes implicated in LCCS1, LCCS2 and LCCS3 and elucidates mRNA processing as a critical molecular mechanism in motoneuron development and maturation.


Developmental Biology | 2008

Canonical WNT/β-catenin signaling is required for ureteric branching

Darren Bridgewater; Brian J. Cox; Jason E. Cain; Agnes Lau; Valerie Athaide; Paul S. Gill; Satu Kuure; Kirsi Sainio; Norman D. Rosenblum

WNT/beta-catenin signaling has an established role in nephron formation during kidney development. Yet, the role of beta-catenin during ureteric morphogenesis in vivo is undefined. We generated a murine genetic model of beta-catenin deficiency targeted to the ureteric bud cell lineage. Newborn mutant mice demonstrated bilateral renal aplasia or renal dysplasia. Analysis of the embryologic events leading to this phenotype revealed that abnormal ureteric branching at E12.5 precedes histologic abnormalities at E13.5. Microarray analysis of E12.5 kidney tissue identified decreased Emx2 and Lim1 expression among a small subset of renal patterning genes disrupted at the stage of abnormal branching. These alterations are followed by decreased expression of genes downstream of Emx2, including Lim1, Pax2, and the ureteric tip markers, c-ret and Wnt 11. Together, these data demonstrate that beta-catenin performs essential functions during renal branching morphogenesis via control of a hierarchy of genes that control ureteric branching.


PLOS Genetics | 2010

Actin depolymerizing factors cofilin1 and destrin are required for ureteric bud branching morphogenesis

Satu Kuure; Cristina Cebrian; Quentin Machingo; Benson Lu; Xuan Chi; Deborah Hyink; Vivette D. D'Agati; Christine B. Gurniak; Walter Witke; Frank Costantini

The actin depolymerizing factors (ADFs) play important roles in several cellular processes that require cytoskeletal rearrangements, such as cell migration, but little is known about the in vivo functions of ADFs in developmental events like branching morphogenesis. While the molecular control of ureteric bud (UB) branching during kidney development has been extensively studied, the detailed cellular events underlying this process remain poorly understood. To gain insight into the role of actin cytoskeletal dynamics during renal branching morphogenesis, we studied the functional requirements for the closely related ADFs cofilin1 (Cfl1) and destrin (Dstn) during mouse development. Either deletion of Cfl1 in UB epithelium or an inactivating mutation in Dstn has no effect on renal morphogenesis, but simultaneous lack of both genes arrests branching morphogenesis at an early stage, revealing considerable functional overlap between cofilin1 and destrin. Lack of Cfl1 and Dstn in the UB causes accumulation of filamentous actin, disruption of normal epithelial organization, and defects in cell migration. Animals with less severe combinations of mutant Cfl1 and Dstn alleles, which retain one wild-type Cfl1 or Dstn allele, display abnormalities including ureter duplication, renal hypoplasia, and abnormal kidney shape. The results indicate that ADF activity, provided by either cofilin1 or destrin, is essential in UB epithelial cells for normal growth and branching.


Development | 2010

The transcription factors Etv4 and Etv5 mediate formation of the ureteric bud tip domain during kidney development

Satu Kuure; Xuan Chi; Benson Lu; Frank Costantini

Signaling by the Ret receptor tyrosine kinase promotes cell movements in the Wolffian duct that give rise to the first ureteric bud tip, initiating kidney development. Although the ETS transcription factors Etv4 and Etv5 are known to be required for mouse kidney development and to act downstream of Ret, their specific functions are unclear. Here, we examine their role by analyzing the ability of Etv4 Etv5 compound mutant cells to contribute to chimeric kidneys. Etv4−/−;Etv5+/− cells show a limited distribution in the caudal Wolffian duct and ureteric bud, similar to Ret−/− cells, revealing a cell-autonomous role for Etv4 and Etv5 in the cell rearrangements promoted by Ret. By contrast, Etv4−/−;Etv5−/− cells display more severe developmental limitations, suggesting a broad role for Etv4 and Etv5 downstream of multiple signals, which are together important for Wolffian duct and ureteric bud morphogenesis.


Mechanisms of Development | 2005

Crosstalk between Jagged1 and GDNF/Ret/GFRα1 signalling regulates ureteric budding and branching

Satu Kuure; Kirsi Sainio; Reetta Vuolteenaho; Mika Ilves; Kirmo Wartiovaara; Tiina Immonen; Jouni Kvist; Seppo Vainio; Hannu Sariola

Glial-Cell-Line-Derived Neurotrophic Factor (GDNF) is the major mesenchyme-derived regulator of ureteric budding and branching during nephrogenesis. The ligand activates on the ureteric bud epithelium a receptor complex composed of Ret and GFRalpha1. The upstream regulators of the GDNF receptors are poorly known. A Notch ligand, Jagged1 (Jag1), co-localises with GDNF and its receptors during early kidney morphogenesis. In this study we utilized both in vitro and in vivo models to study the possible regulatory relationship of Ret and Notch pathways. Urogenital blocks were exposed to exogenous GDNF, which promotes supernumerary ureteric budding from the Wolffian duct. GDNF-induced ectopic buds expressed Jag1, which suggests that GDNF can, directly or indirectly, up-regulate Jag1 through Ret/GFRalpha1 signalling. We then studied the role of Jag1 in nephrogenesis by transgenic mice constitutively expressing human Jag1 in Wolffian duct and its derivatives under HoxB7 promoter. Jag1 transgenic mice showed a spectrum of renal defects ranging from aplasia to hypoplasia. Ret and GFRalpha1 are normally downregulated in the Wolffian duct, but they were persistently expressed in the entire transgenic duct. Simultaneously, GDNF expression remained unexpectedly low in the metanephric mesenchyme. In vitro, exogenous GDNF restored the budding and branching defects in transgenic urogenital blocks. Renal differentiation apparently failed because of perturbed stimulation of primary ureteric budding and subsequent branching. Thus, the data provide evidence for a novel crosstalk between Notch and Ret/GFRalpha1 signalling during early nephrogenesis.


PLOS Genetics | 2015

GDNF Overexpression from the Native Locus Reveals its Role in the Nigrostriatal Dopaminergic System Function

Anmol Kumar; Jaakko Kopra; Kärt Varendi; Lauriina L. Porokuokka; Anne Panhelainen; Satu Kuure; Pepin Marshall; Nina Karalija; Mari-Anne Härma; Carolina Vilenius; Kersti Lilleväli; Triin Tekko; Jelena Mijatovic; Nita Pulkkinen; Madis Jakobson; Maili Jakobson; Roxana Ola; Erik Palm; Maria Lindahl; Ingrid Strömberg; Vootele Võikar; T. Petteri Piepponen; Mart Saarma; Jaan-Olle Andressoo

Degeneration of nigrostriatal dopaminergic system is the principal lesion in Parkinson’s disease. Because glial cell line-derived neurotrophic factor (GDNF) promotes survival of dopamine neurons in vitro and in vivo, intracranial delivery of GDNF has been attempted for Parkinson’s disease treatment but with variable success. For improving GDNF-based therapies, knowledge on physiological role of endogenous GDNF at the sites of its expression is important. However, due to limitations of existing genetic model systems, such knowledge is scarce. Here, we report that prevention of transcription of Gdnf 3’UTR in Gdnf endogenous locus yields GDNF hypermorphic mice with increased, but spatially unchanged GDNF expression, enabling analysis of postnatal GDNF function. We found that increased level of GDNF in the central nervous system increases the number of adult dopamine neurons in the substantia nigra pars compacta and the number of dopaminergic terminals in the dorsal striatum. At the functional level, GDNF levels increased striatal tissue dopamine levels and augmented striatal dopamine release and re-uptake. In a proteasome inhibitor lactacystin-induced model of Parkinson’s disease GDNF hypermorphic mice were protected from the reduction in striatal dopamine and failure of dopaminergic system function. Importantly, adverse phenotypic effects associated with spatially unregulated GDNF applications were not observed. Enhanced GDNF levels up-regulated striatal dopamine transporter activity by at least five fold resulting in enhanced susceptibility to 6-OHDA, a toxin transported into dopamine neurons by DAT. Further, we report how GDNF levels regulate kidney development and identify microRNAs miR-9, miR-96, miR-133, and miR-146a as negative regulators of GDNF expression via interaction with Gdnf 3’UTR in vitro. Our results reveal the role of GDNF in nigrostriatal dopamine system postnatal development and adult function, and highlight the importance of correct spatial expression of GDNF. Furthermore, our results suggest that 3’UTR targeting may constitute a useful tool in analyzing gene function.


PLOS Genetics | 2014

Mitogen-activated protein kinase (MAPK) pathway regulates branching by remodeling epithelial cell adhesion.

Anneliis Ihermann-Hella; Maria Lume; Ilkka Miinalainen; Anniina Pirttiniemi; Yujuan Gui; Johan Peränen; Jean Charron; Mart Saarma; Franklin D. Costantini; Satu Kuure

Although the growth factor (GF) signaling guiding renal branching is well characterized, the intracellular cascades mediating GF functions are poorly understood. We studied mitogen-activated protein kinase (MAPK) pathway specifically in the branching epithelia of developing kidney by genetically abrogating the pathway activity in mice lacking simultaneously dual-specificity protein kinases Mek1 and Mek2. Our data show that MAPK pathway is heterogeneously activated in the subset of G1- and S-phase epithelial cells, and its tissue-specific deletion results in severe renal hypodysplasia. Consequently to the deletion of Mek1/2, the activation of ERK1/2 in the epithelium is lost and normal branching pattern in mutant kidneys is substituted with elongation-only phenotype, in which the epithelium is largely unable to form novel branches and complex three-dimensional patterns, but able to grow without primary defects in mitosis. Cellular characterization of double mutant epithelium showed increased E-cadherin at the cell surfaces with its particular accumulation at baso-lateral locations. This indicates changes in cellular adhesion, which were revealed by electron microscopic analysis demonstrating intercellular gaps and increased extracellular space in double mutant epithelium. When challenged to form monolayer cultures, the mutant epithelial cells were impaired in spreading and displayed strong focal adhesions in addition to spiky E-cadherin. Inhibition of MAPK activity reduced paxillin phosphorylation on serine 83 while remnants of phospho-paxillin, together with another focal adhesion (FA) protein vinculin, were augmented at cell surface contacts. We show that MAPK activity is required for branching morphogenesis, and propose that it promotes cell cycle progression and higher cellular motility through remodeling of cellular adhesions.


Journal of Biological Chemistry | 2015

ETS-related transcription factors ETV4 and ETV5 are involved in proliferation and induction of differentiation-associated genes in embryonic stem (ES) cells.

Tadayuki Akagi; Satu Kuure; Kousuke Uranishi; Hiroshi Koide; Frank Costantini; Takashi Yokota

Background: Characteristics of ES cells are controlled by gene regulatory networks, and ETV4 and -5 participate in the network. Results: Proliferation, induction of ectodermal marker genes, and expression of stem cell-related genes were impaired in Etv4/5 double KO ES cells. Conclusion: ETV4 and -5 crucially define properties of ES cells. Significance: Gene regulatory networks are dysregulated in the double KO ES cells. The pluripotency and self-renewal capacity of embryonic stem (ES) cells is regulated by several transcription factors. Here, we show that the ETS-related transcription factors Etv4 and Etv5 (Etv4/5) are specifically expressed in undifferentiated ES cells, and suppression of Oct3/4 results in down-regulation of Etv4/5. Simultaneous deletion of Etv4 and Etv5 (Etv4/5 double knock-out (dKO)) in ES cells resulted in a flat, epithelial cell-like appearance, whereas the morphology changed into compact colonies in a 2i medium (containing two inhibitors for GSK3 and MEK/ERK). Expression levels of self-renewal marker genes, including Oct3/4 and Nanog, were similar between wild-type and dKO ES cells, whereas proliferation of Etv4/5 dKO ES cells was decreased with overexpression of cyclin-dependent kinase inhibitors (p16/p19, p15, and p57). A differentiation assay revealed that the embryoid bodies derived from Etv4/5 dKO ES cells were smaller than the control, and expression of ectoderm marker genes, including Fgf5, Sox1, and Pax3, was not induced in dKO-derived embryoid bodies. Microarray analysis demonstrated that stem cell-related genes, including Tcf15, Gbx2, Lrh1, Zic3, and Baf60c, were significantly repressed in Etv4/5 dKO ES cells. The artificial expression of Etv4 and/or Etv5 in Etv4/5 dKO ES cells induced re-expression of Tcf15 and Gbx2. These results indicate that Etv4 and Etv5, potentially through regulation of Gbx2 and Tcf15, are involved in the ES cell proliferation and induction of differentiation-associated genes in ES cells.


Journal of The American Society of Nephrology | 2011

The GDNF Target Vsnl1 Marks the Ureteric Tip

Roxana Ola; Madis Jakobson; Jouni Kvist; Nina Perälä; Satu Kuure; Karl-Heinz Braunewell; Darren Bridgewater; Norman D. Rosenblum; Dmitri Chilov; Tiina Immonen; Kirsi Sainio; Hannu Sariola

Glial cell line-derived neurotrophic factor (GDNF) is indispensable for ureteric budding and branching. If applied exogenously, GDNF promotes ectopic ureteric buds from the Wolffian duct. Although several downstream effectors of GDNF are known, the identification of early response genes is incomplete. Here, microarray screening detected several GDNF-regulated genes in the Wolffian duct, including Visinin like 1 (Vsnl1), which encodes a neuronal calcium-sensor protein. We observed renal Vsnl1 expression exclusively in the ureteric epithelium, but not in Gdnf-null kidneys. In the tissue culture of Gdnf-deficient kidney primordium, exogenous GDNF and alternative bud inducers (FGF7 and follistatin) restored Vsnl1 expression. Hence, Vsnl1 characterizes the tip of the ureteric bud epithelium regardless of the inducer. In the tips, Vsnl1 showed a mosaic expression pattern that was mutually exclusive with β-catenin transcriptional activation. Vsnl1 was downregulated in both β-catenin-stabilized and β-catenin-deficient kidneys. Moreover, in a mouse collecting duct cell line, Vsnl1 compromised β-catenin stability, suggesting a counteracting relationship between Vsnl1 and β-catenin. In summary, Vsnl1 marks ureteric bud tips in embryonic kidneys, and its mosaic pattern demonstrates a heterogeneity of cell types that may be critical for normal ureteric branching.

Collaboration


Dive into the Satu Kuure's collaboration.

Top Co-Authors

Avatar

Frank Costantini

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Benson Lu

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuan Chi

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mart Saarma

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Roxana Ola

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge