Satu Vesterlund
University of Turku
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Satu Vesterlund.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Matti Kankainen; Lars Paulin; Soile Tynkkynen; Ingemar von Ossowski; Justus Reunanen; Pasi Partanen; Reetta Satokari; Satu Vesterlund; Antoni P. A. Hendrickx; Sarah Lebeer; Sigrid De Keersmaecker; Jos Vanderleyden; Tuula Hämäläinen; Suvi Laukkanen; Noora Salovuori; Jarmo Ritari; Edward Alatalo; Riitta Korpela; Tiina Mattila-Sandholm; Anna Lassig; Katja Hatakka; Katri T. Kinnunen; Heli Karjalainen; Maija Saxelin; Kati Laakso; Anu Surakka; Airi Palva; Tuomas Salusjärvi; Petri Auvinen; Willem M. de Vos
To unravel the biological function of the widely used probiotic bacterium Lactobacillus rhamnosus GG, we compared its 3.0-Mbp genome sequence with the similarly sized genome of L. rhamnosus LC705, an adjunct starter culture exhibiting reduced binding to mucus. Both genomes demonstrated high sequence identity and synteny. However, for both strains, genomic islands, 5 in GG and 4 in LC705, punctuated the colinearity. A significant number of strain-specific genes were predicted in these islands (80 in GG and 72 in LC705). The GG-specific islands included genes coding for bacteriophage components, sugar metabolism and transport, and exopolysaccharide biosynthesis. One island only found in L. rhamnosus GG contained genes for 3 secreted LPXTG-like pilins (spaCBA) and a pilin-dedicated sortase. Using anti-SpaC antibodies, the physical presence of cell wall-bound pili was confirmed by immunoblotting. Immunogold electron microscopy showed that the SpaC pilin is located at the pilus tip but also sporadically throughout the structure. Moreover, the adherence of strain GG to human intestinal mucus was blocked by SpaC antiserum and abolished in a mutant carrying an inactivated spaC gene. Similarly, binding to mucus was demonstrated for the purified SpaC protein. We conclude that the presence of SpaC is essential for the mucus interaction of L. rhamnosus GG and likely explains its ability to persist in the human intestinal tract longer than LC705 during an intervention trial. The presence of mucus-binding pili on the surface of a nonpathogenic Gram-positive bacterial strain reveals a previously undescribed mechanism for the interaction of selected probiotic lactobacilli with host tissues.
Applied and Environmental Microbiology | 2010
Ingemar von Ossowski; Justus Reunanen; Reetta Satokari; Satu Vesterlund; Matti Kankainen; Heikki Huhtinen; Soile Tynkkynen; Seppo Salminen; Willem M. de Vos; Airi Palva
ABSTRACT Lactobacillus rhamnosus GG is a well-established Gram-positive probiotic strain, whose health-benefiting properties are dependent in part on prolonged residence in the gastrointestinal tract and are likely dictated by adherence to the intestinal mucosa. Previously, we identified two pilus gene clusters (spaCBA and spaFED) in the genome of this probiotic bacterium, each of which contained the predicted genes for three pilin subunits and a single sortase. We also confirmed the presence of SpaCBA pili on the cell surface and attributed an intestinal mucus-binding capacity to one of the pilin subunits (SpaC). Here, we report cloning of the remaining pilin genes (spaA, spaB, spaD, spaE, and spaF) in Escherichia coli, production and purification of the recombinant proteins, and assessment of the adherence of these proteins to human intestinal mucus. Our findings indicate that the SpaB and SpaF pilin subunits also exhibit substantial binding to mucus, which can be inhibited competitively in a dose-related manner. Moreover, the binding between the SpaB pilin subunit and the mucosal substrate appears to operate through electrostatic contacts and is not related to a recognized mucus-binding domain. We conclude from these results that it is conceivable that two pilin subunits (SpaB and SpaC) in the SpaCBA pilus fiber play a role in binding to intestinal mucus, but for the uncharacterized and putative SpaFED pilus fiber only a single pilin subunit (SpaF) is potentially responsible for adhesion to mucus.
Current Opinion in Biotechnology | 2010
Seppo Salminen; Sonja Nybom; Jussi Meriluoto; Maria Carmen Collado; Satu Vesterlund; Hani El-Nezami
The probiotic terminology has matured over the years and currently a unified definition has been formed. Lactic acid bacteria (LAB) and bifidobacteria have been reported to remove heavy metals, cyanotoxins and mycotoxins from aqueous solutions. The binding processes appear to be species and strain specific. The most efficient microbial species and strains in the removal of these compounds vary between components tested. However, it is of interest to note that most strains characterized until now do not bind positive components or nutrients in the diet. This has significant implications to future detoxification biotechnology development. In a similar manner, lactic acid bacteria and bifidobacteria interact directly with viruses and pathogens in food and water as well as toxin producing microbes and some toxins. This review updates information and aims to characterize these interactions in association. The target is to understand probiotic health effects and to relate the mechanisms and actions to future potential of specific probiotic bacteria on decontamination of foods and water, and diets. The same aim is targeted in characterizing the role of probiotics in inactivating pathogens and viruses of health importance to facilitate the establishment of novel means of disease risk reduction related health benefits.
International Journal of Food Microbiology | 2012
Satu Vesterlund; Kari Salminen; Seppo Salminen
This study evaluated the effect of water activity on the long-term storage stability of the probiotic Lactobacillus rhamnosus GG (LGG) in a dry food matrix. Viability of LGG was further studied in a crushed flaxseed matrix - a new possible product matrix to deliver probiotics - as well as in reference matrices as maltodextrin. Three different water activities (a(w)=0.11, 0.22 and 0.43) were used, and preparations were stored at room temperature for up to 14months. The viability of LGG was less dependent on the matrix used, but strongly dependent on the water activity. Viability in flaxseed was lost rapidly with a(w) 0.43: with a(w) 0.22 the reduction was 2.4 log(10) units and with a(w) 0.11 the reduction of viability was only 0.29 log(10) units during the entire storage time. Taken together, regulating water activity to a low value may offer possibilities for extending the shelf life of dry probiotic products.
Meat Science | 2006
Monika Pogány Simonová; Viola Strompfová; Miroslava Marciňáková; Andrea Lauková; Satu Vesterlund; Mariluz Latorre Moratalla; Sara Bover-Cid; Carmen Vidal-Carou
The aims of this study were to isolate, identify and characterize the population of coagulase-negative staphylococci in different types of Slovak traditional sausages and to determine the metabolic properties of selected Staphylococcus xylosus and S. carnosus strains for the selection of potential starter cultures to use in the processing of sausages. The strains were tested for lactic acid production, survival in the presence of bile and sensitivity to antibiotics. Bacteriocin production, adhesion ability as well as biogenic amine (BA) production by isolates were also analysed. Most of the isolates were identified as S. xylosus and S. carnosus. Lactic acid values ranged from 0.40 to 1.03mmol/l and strains survived in the presence of 1% bile. Most of the strains studied were sensitive to all antibiotics. Two strains, S. xylosus SO3/1M/1/2 and S. carnosus SO2/F/2/5 inhibited Listeria innocua and Pseudomonas sp. S. xylosus strains did not produce any BA, while S. carnosus SO2/F/2/5 did. S. xylosus SO3/1M/1/2 and S. carnosus SO2/F/2/5 appeared as the most adhesive strains. S. xylosus SO3/1M/1/2 with antimicrobial activity against Enterococcus avium EA5, L. innocua LMG13568 and Pseudomonas sp. SO1/1M/1/4, adhesion ability and free BA production could be used as starter culture in sausage manufacture.
Applied and Environmental Microbiology | 2013
Veera Kainulainen; Justus Reunanen; Kaisa Hiippala; Simone Guglielmetti; Satu Vesterlund; Airi Palva; Reetta Satokari
ABSTRACT The ability of bifidobacteria to adhere to the intestine of the human host is considered to be important for efficient colonization and achieving probiotic effects. Bifidobacterium bifidum strains DSM20456 and MIMBb75 adhere well to the human intestinal cell lines Caco-2 and HT-29. The surface lipoprotein BopA was previously described to be involved in mediating adherence of B. bifidum to epithelial cells, but thioacylated, purified BopA inhibited the adhesion of B. bifidum to epithelial cells in competitive adhesion assays only at very high concentrations, indicating an unspecific effect. In this study, the role of BopA in the adhesion of B. bifidum was readdressed. The gene encoding BopA was cloned and expressed without its lipobox and hydrophobic signal peptide in Escherichia coli, and an antiserum against the recombinant BopA was produced. The antiserum was used to demonstrate the abundant localization of BopA on the cell surface of B. bifidum. However, blocking of B. bifidum BopA with specific antiserum did not reduce adhesion of bacteria to epithelial cell lines, arguing that BopA is not an adhesin. Also, adhesion of B. bifidum to human colonic mucin and fibronectin was found to be BopA independent. The recombinant BopA bound only moderately to human epithelial cells and colonic mucus, and it failed to bind to fibronectin. Thus, our results contrast the earlier findings on the major role of BopA in adhesion, indicating that the strong adhesion of B. bifidum to epithelial cell lines is BopA independent.
International Journal of Food Microbiology | 2013
Elloise du Toit; Satu Vesterlund; Miguel Gueimonde; Seppo Salminen
The production of viable functional probiotics presupposes stability of strain features in the final product. We evaluated the impact of acquisition of heat-tolerance and subsequent freeze-drying on the adhesion properties of Lactobacillus rhamnosus GG, Lactobacillus casei Shirota, Bifidobacterium lactis Bb-12 and Bifidobacterium animalis IF20/1 and on their ability to inhibit the adhesion of pathogens in a mucus model. Both fresh and freeze-dried cultures were evaluated. Significant differences were observed between fresh, freeze dried, fresh heat-tolerant and freeze dried heat-tolerant strains, especially in the ability of the freeze dried probiotics to exclude, displace or outcompete pathogens. Based on our study characterizing probiotic properties such as adhesion and competitive exclusion, it seems possible to adapt probiotics to processing stresses, such as heat, without significantly changing the probiotic properties of the strains assessed. This may provide new options for future probiotic production technology. However, our results also emphasize that the properties of the stress-adapted strains, as well as the effect of the production processes should always be assessed as these are strain-specific.
Zoonoses and Public Health | 2013
M. Ganan; A. J. Martinez-Rodriguez; A.V. Carrascosa; Satu Vesterlund; Seppo Salminen; Reetta Satokari
Campylobacter is the most common cause of bacterial food‐borne diarrhoeal disease throughout the world. The principal risk of human contamination is handling and consumption of contaminated poultry meat. To colonize poultry, Campylobacter adheres to and persists in the mucus layer that covers the intestinal epithelium. Inhibiting adhesion to the mucus could prevent colonization of the intestine. The aim of this study was to investigate in vitro the protective effect of defined commercial human probiotic strains on the adhesion of Campylobacter spp. to chicken intestinal mucus, in a search for alternatives to antibiotics to control this food‐borne pathogen. The probiotic strains Lactobacillus rhamnosus GG and Propionibacterium freudenreichii ssp. shermanii JS and a starter culture strain Lactococcus lactis ssp. lactis adhered well to chicken intestinal mucus and were able to reduce the binding of Campylobacter spp. when the mucus was colonized with the probiotic strain before contacting the pathogen. Human‐intended probiotics could be useful as prophylactics in poultry feeding for controlling Campylobacter spp. colonization.
Current Microbiology | 2006
Nicole J. Pultz; Satu Vesterlund; Arthur C. Ouwehand; Curtis J. Donskey
The intestinal mucus layer provides a potential niche for colonization by vancomycin-resistant Enterococcus faecium (VREF). We therefore examined the ability of six VREF strains to adhere to human intestinal mucus and determined binding kinetics. Four of six (67%) VREF strains demonstrated significant adhesion to immobilized intestinal mucus compared with a Salmonella typhimurium–negative control strain, but the level of adherence was low compared with Lactobacillus rhamnosus GG. Binding kinetics studies demonstrated that the maximum number of these four VREF strains that could adhere to a unit surface area of immobilized mucus was similar to or higher than the maximum number of L. rhamnosus GG that could adhere; however, L. rhamnosus GG demonstrated 20- to 130-times higher affinity than the VREF strains. These results demonstrate that VREF strains may adhere to human intestinal mucus and suggest that L. rhamnosus GG might be able to displace VREF strains.
Journal of Aquatic Food Product Technology | 2014
Fandi Ibrahim; Satu Vesterlund
This study evaluates the potential use of protective cultures to improve the microbial quality of vacuum-packed raw Atlantic salmon. The inhibitory properties of 16 selected lactic acid bacteria and bifidobacteria against 32 spoilage organisms were characterized. As the food matrix and natural microflora of the product can affect the inhibitory effect, the best inhibitory strain, Lactococcus lactis ssp. lactis, was also tested in vacuum-packed salmon. As a result, L. lactis treated products had 3-days prolonged shelf life when compared to nontreated fish. In addition, the usage of L. lactis did not change the organoleptical and textural properties of the fish. This study shows that Lactococcus lactis might be applied to increase shelf life of vacuum-packed raw fish stored at refrigeration temperatures.