Satya Prathyusha Bhamidimarri
Jacobs University Bremen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Satya Prathyusha Bhamidimarri.
ACS Nano | 2016
Kerstin Göpfrich; Chen Yu Li; Maria Ricci; Satya Prathyusha Bhamidimarri; Jejoong Yoo; Bertalan Gyenes; Alexander Ohmann; Mathias Winterhalter; Aleksei Aksimentiev; Ulrich F. Keyser
DNA nanotechnology allows for the creation of three-dimensional structures at nanometer scale. Here, we use DNA to build the largest synthetic pore in a lipid membrane to date, approaching the dimensions of the nuclear pore complex and increasing the pore-area and the conductance 10-fold compared to previous man-made channels. In our design, 19 cholesterol tags anchor a megadalton funnel-shaped DNA origami porin in a lipid bilayer membrane. Confocal imaging and ionic current recordings reveal spontaneous insertion of the DNA porin into the lipid membrane, creating a transmembrane pore of tens of nanosiemens conductance. All-atom molecular dynamics simulations characterize the conductance mechanism at the atomic level and independently confirm the DNA porins’ large ionic conductance.
Nature | 2017
Amy J. Glenwright; Karunakar R. Pothula; Satya Prathyusha Bhamidimarri; Dror S. Chorev; Arnaud Baslé; Susan J. Firbank; Hongjun Zheng; Carol V. Robinson; Mathias Winterhalter; Ulrich Kleinekathöfer; David N. Bolam; Bert van den Berg
The human large intestine is populated by a high density of microorganisms, collectively termed the colonic microbiota, which has an important role in human health and nutrition. The survival of microbiota members from the dominant Gram-negative phylum Bacteroidetes depends on their ability to degrade dietary glycans that cannot be metabolized by the host. The genes encoding proteins involved in the degradation of specific glycans are organized into co-regulated polysaccharide utilization loci, with the archetypal locus sus (for starch utilisation system) encoding seven proteins, SusA–SusG. Glycan degradation mainly occurs intracellularly and depends on the import of oligosaccharides by an outer membrane protein complex composed of an extracellular SusD-like lipoprotein and an integral membrane SusC-like TonB-dependent transporter. The presence of the partner SusD-like lipoprotein is the major feature that distinguishes SusC-like proteins from previously characterized TonB-dependent transporters. Many sequenced gut Bacteroides spp. encode over 100 SusCD pairs, of which the majority have unknown functions and substrate specificities. The mechanism by which extracellular substrate binding by SusD proteins is coupled to outer membrane passage through their cognate SusC transporter is unknown. Here we present X-ray crystal structures of two functionally distinct SusCD complexes purified from Bacteroides thetaiotaomicron and derive a general model for substrate translocation. The SusC transporters form homodimers, with each β-barrel protomer tightly capped by SusD. Ligands are bound at the SusC–SusD interface in a large solvent-excluded cavity. Molecular dynamics simulations and single-channel electrophysiology reveal a ‘pedal bin’ mechanism, in which SusD moves away from SusC in a hinge-like fashion in the absence of ligand to expose the substrate-binding site to the extracellular milieu. These data provide mechanistic insights into outer membrane nutrient import by members of the microbiota, an area of major importance for understanding human–microbiota symbiosis.
Nano Letters | 2016
Kerstin Göpfrich; Chen Yu Li; Iwona Mames; Satya Prathyusha Bhamidimarri; Maria Ricci; Jejoong Yoo; Adam Mames; Alexander Ohmann; Mathias Winterhalter; Eugen Stulz; Aleksei Aksimentiev; Ulrich F. Keyser
Because of their hollow interior, transmembrane channels are capable of opening up pathways for ions across lipid membranes of living cells. Here, we demonstrate ion conduction induced by a single DNA duplex that lacks a hollow central channel. Decorated with six porpyrin-tags, our duplex is designed to span lipid membranes. Combining electrophysiology measurements with all-atom molecular dynamics simulations, we elucidate the microscopic conductance pathway. Ions flow at the DNA–lipid interface as the lipid head groups tilt toward the amphiphilic duplex forming a toroidal pore filled with water and ions. Ionic current traces produced by the DNA-lipid channel show well-defined insertion steps, closures, and gating similar to those observed for traditional protein channels or synthetic pores. Ionic conductances obtained through simulations and experiments are in excellent quantitative agreement. The conductance mechanism realized here with the smallest possible DNA-based ion channel offers a route to design a new class of synthetic ion channels with maximum simplicity.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Bert van den Berg; Satya Prathyusha Bhamidimarri; Jigneshkumar Dahyabhai Prajapati; Ulrich Kleinekathöfer; Mathias Winterhalter
Significance The outer membrane (OM) of gram-negative bacteria forms a protective layer on the outside of the cell that prevents unrestricted access of harmful compounds. For the acquisition of ions and nutrients, the OM contains two types of transport proteins: passive diffusion channels and active transporters. Due to the limited diameters of passive diffusion channels, bulky molecules such as iron–siderophores and complex oligosaccharides are assumed to be taken up exclusively by active transporters. Here we assert that this assumption is incorrect. Using a combination of biophysical and computational approaches, we show that the OM protein CymA (cyclodextrin metabolism A) from Klebsiella oxytoca represents a previously unidentified paradigm in OM transport by mediating the passive diffusion of cyclic oligosaccharides (cyclodextrins) with diameters of ∼15 Å. The outer membrane (OM) of gram-negative bacteria forms a protective layer around the cell that serves as a permeability barrier to prevent unrestricted access of noxious substances. The permeability barrier of the OM results partly from the limited pore diameters of OM diffusion channels. As a consequence, there is an “OM size-exclusion limit,” and the uptake of bulky molecules with molecular masses of more than ∼600 Da is thought to be mediated by TonB-dependent, active transporters. Intriguingly, the OM protein CymA from Klebsiella oxytoca does not depend on TonB but nevertheless mediates efficient OM passage of cyclodextrins with diameters of up to ∼15 Å. Here we show, by using X-ray crystallography, molecular dynamics simulations, and single-channel electrophysiology, that CymA forms a monomeric 14-stranded β-barrel with a large pore that is occluded on the periplasmic side by the N-terminal 15 residues of the protein. Representing a previously unidentified paradigm in OM transport, CymA mediates the passive diffusion of bulky molecules via an elegant transport mechanism in which a mobile element formed by the N terminus acts as a ligand-expelled gate to preserve the permeability barrier of the OM.
Biophysical Journal | 2016
Satya Prathyusha Bhamidimarri; Jigneshkumar Dahyabhai Prajapati; Bert van den Berg; Mathias Winterhalter; Ulrich Kleinekathöfer
To quantify the flow of small uncharged molecules into and across nanopores, one often uses ion currents. The respective ion-current fluctuations caused by the presence of the analyte make it possible to draw some conclusions about the direction and magnitude of the analyte flow. However, often this flow appears to be asymmetric with respect to the applied voltage. As a possible reason for this asymmetry, we identified the electroosmotic flow (EOF), which is the water transport associated with ions driven by the external transmembrane voltage. As an example, we quantify the contribution of the EOF through a nanopore by investigating the permeation of α-cyclodextrin through CymA, a cyclodextrin-specific channel from Klebsiella oxytoca. To understand the results from electrophysiology on a molecular level, all-atom molecular dynamics simulations are used to detail the effect of the EOF on substrate entry to and exit from a CymA channel in which the N-terminus has been deleted. The combined experimental and computational results strongly suggest that one needs to account for the significant contribution of the EOF when analyzing the penetration of cyclodextrins through the CymA pore. This example study at the same time points to the more general finding that the EOF needs to be considered in translocation studies of neutral molecules and, at least in many cases, should be able to help in discriminating between translocation and binding events.
Scientific Reports | 2015
Bert van den Berg; Satya Prathyusha Bhamidimarri; Mathias Winterhalter
COG4313 proteins form a large and widespread family of outer membrane channels and have been implicated in the uptake of a variety of hydrophobic molecules. Structure-function studies of this protein family have so far been hampered by a lack of structural information. Here we present the X-ray crystal structure of Pput2725 from the biodegrader Pseudomonas putida F1, a COG4313 channel of unknown function, using data to 2.3 Å resolution. The structure shows a 12-stranded barrel with an N-terminal segment preceding the first β-strand occluding the lumen of the barrel. Single channel electrophysiology and liposome swelling experiments suggest that while the narrow channel visible in the crystal structure does allow passage of ions and certain small molecules in vitro, Pput2725 is unlikely to function as a channel for hydrophilic molecules. Instead, the presence of bound detergent molecules inside the barrel suggests that Pput2725 mediates uptake of hydrophobic molecules. Sequence alignments and the locations of highly conserved residues suggest the presence of a dynamic lateral opening through which hydrophobic molecules might gain entry into the cell. Our results provide the basis for structure-function studies of COG4313 family members with known function, such as the SphA sphingosine uptake channel of Pseudomonas aeruginosa.
ACS Chemical Biology | 2017
Gowrishankar Soundararajan; Satya Prathyusha Bhamidimarri; Mathias Winterhalter
Pseudomonas aeruginosa utilizes a plethora of substrate specific channels for the uptake of small nutrients. OccD3 (OpdP or PA4501) is an OprD-like arginine uptake channel of P. aeruginosa whose role has been implicated in carbapenem uptake. To understand the mechanism of selective permeation, we reconstituted single OccD3 channels in a planar lipid bilayer and characterized the interaction with Imipenem and Meropenem, analyzing the ion current fluctuation in the presence of substrates. We performed point mutations in the constriction region of OccD3 to understand the binding and translocation of antibiotic in OccD3. By mutating two key residues in the substrate binding sites of OccD3 (located in the internal loop L7 and basic ladder), we emphasize the importance of these residues. We show that carbapenem antibiotics follow a similar path as arginine through the constriction zone and the basic ladder to translocate across OccD3.
bioRxiv | 2018
Satya Prathyusha Bhamidimarri; M. Zahn; Jigneshkumar Dahyabhai Prajapati; Christian Schleberger; Sandra Soderholm; Jennifer Hoover; Josh West; Ulrich Kleinekathoefer; Dirk Bumann; Mathias Winterhalter; Bert van den Berg
Research efforts to discover potential new antibiotics for Gram-negative bacteria suffer from high attrition rates due to the synergistic action of efflux systems and the limited permeability of the outer membrane (OM). One potential strategy to overcome the OM permeability barrier is to identify small molecules that are natural substrates for abundant OM channels, and to use such compounds as scaffolds for the design of efficiently-permeating antibacterials. Here we present a multidisciplinary approach to identify such potential small-molecule scaffolds. Focusing on the pathogenic bacterium Acinetobacter baumannii, we use OM proteomics to identify DcaP as the most abundant channel under various conditions that are relevant for infection. High-resolution X-ray structure determination of DcaP surprisingly reveals a trimeric, porin-like structure and suggests that dicarboxylic acids are potential transport substrates. Electrophysiological experiments and allatom molecular dynamics simulations confirm this notion and provide atomistic information on likely permeation pathways and energy barriers for several small molecules, including a clinically-relevant β-lactamase inhibitor. Our study provides a general blueprint for the identification of molecular scaffolds that will inform the rational design of future antibacterials.
Journal of Physics D | 2018
Toshio Ando; Satya Prathyusha Bhamidimarri; Niklas Brending; H Colin-York; Lucy M. Collinson; Niels de Jonge; P. J. de Pablo; Elke Debroye; Christian Eggeling; Christian Franck; Marco Fritzsche; Hans C. Gerritsen; Ben N. G. Giepmans; Kay Grünewald; Johan Hofkens; Jacob P. Hoogenboom; Kris P. F. Janssen; Rainer Kaufman; Judith Klumpermann; Nyoman D. Kurniawan; Jana Kusch; Nalan Liv; Viha Parekh; Diana B. Peckys; Florian Rehfeldt; David C. Reutens; Maarten B. J. Roeffaers; Tim Salditt; Iwan A. T. Schaap; Ulrich Schwarz
Abstract Developments in microscopy have been instrumental to progress in the life sciences, and many new techniques have been introduced and led to new discoveries throughout the last century. A wide and diverse range of methodologies is now available, including electron microscopy, atomic force microscopy, magnetic resonance imaging, small-angle x-ray scattering and multiple super-resolution fluorescence techniques, and each of these methods provides valuable read-outs to meet the demands set by the samples under study. Yet, the investigation of cell development requires a multi-parametric approach to address both the structure and spatio-temporal organization of organelles, and also the transduction of chemical signals and forces involved in cell–cell interactions. Although the microscopy technologies for observing each of these characteristics are well developed, none of them can offer read-out of all characteristics simultaneously, which limits the information content of a measurement. For example, while electron microscopy is able to disclose the structural layout of cells and the macromolecular arrangement of proteins, it cannot directly follow dynamics in living cells. The latter can be achieved with fluorescence microscopy which, however, requires labelling and lacks spatial resolution. A remedy is to combine and correlate different readouts from the same specimen, which opens new avenues to understand structure–function relations in biomedical research. At the same time, such correlative approaches pose new challenges concerning sample preparation, instrument stability, region of interest retrieval, and data analysis. Because the field of correlative microscopy is relatively young, the capabilities of the various approaches have yet to be fully explored, and uncertainties remain when considering the best choice of strategy and workflow for the correlative experiment. With this in mind, the Journal of Physics D: Applied Physics presents a special roadmap on the correlative microscopy techniques, giving a comprehensive overview from various leading scientists in this field, via a collection of multiple short viewpoints.
Structure | 2016
Michael Zahn; Satya Prathyusha Bhamidimarri; Arnaud Baslé; Mathias Winterhalter; Bert van den Berg