Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saul J. Priceman is active.

Publication


Featured researches published by Saul J. Priceman.


Cancer Research | 2010

The Sympathetic Nervous System Induces a Metastatic Switch in Primary Breast Cancer

Erica K. Sloan; Saul J. Priceman; Benjamin F. Cox; Stephanie Yu; Matthew A. Pimentel; Veera Tangkanangnukul; Jesusa M.G. Arevalo; Kouki Morizono; Breanne D.W. Karanikolas; Lily Wu; Anil K. Sood; Steven W. Cole

Metastasis to distant tissues is the chief driver of breast cancer-related mortality, but little is known about the systemic physiologic dynamics that regulate this process. To investigate the role of neuroendocrine activation in cancer progression, we used in vivo bioluminescence imaging to track the development of metastasis in an orthotopic mouse model of breast cancer. Stress-induced neuroendocrine activation had a negligible effect on growth of the primary tumor but induced a 30-fold increase in metastasis to distant tissues including the lymph nodes and lung. These effects were mediated by β-adrenergic signaling, which increased the infiltration of CD11b(+)F4/80(+) macrophages into primary tumor parenchyma and thereby induced a prometastatic gene expression signature accompanied by indications of M2 macrophage differentiation. Pharmacologic activation of β-adrenergic signaling induced similar effects, and treatment of stressed animals with the β-antagonist propranolol reversed the stress-induced macrophage infiltration and inhibited tumor spread to distant tissues. The effects of stress on distant metastasis were also inhibited by in vivo macrophage suppression using the CSF-1 receptor kinase inhibitor GW2580. These findings identify activation of the sympathetic nervous system as a novel neural regulator of breast cancer metastasis and suggest new strategies for antimetastatic therapies that target the β-adrenergic induction of prometastatic gene expression in primary breast cancers.


Nature Nanotechnology | 2010

A novel intracellular protein delivery platform based on single-protein nanocapsules

Ming Yan; Juanjuan Du; Zhen Gu; Min Liang; Yufang Hu; Wenjun Zhang; Saul J. Priceman; Lily Wu; Z. Hong Zhou; Zheng Liu; Tatiana Segura; Yi Tang; Yunfeng Lu

An average cell contains thousands of proteins that participate in normal cellular functions, and most diseases are somehow related to the malfunctioning of one or more of these proteins. Protein therapy, which delivers proteins into the cell to replace the dysfunctional protein, is considered the most direct and safe approach for treating disease. However, the effectiveness of this method has been limited by its low delivery efficiency and poor stability against proteases in the cell, which digest the protein. Here, we show a novel delivery platform based on nanocapsules consisting of a protein core and a thin permeable polymeric shell that can be engineered to either degrade or remain stable at different pHs. Non-degradable capsules show long-term stability, whereas the degradable ones break down their shells, enabling the core protein to be active once inside the cells. Multiple proteins can be delivered to cells with high efficiency while maintaining low toxicity, suggesting potential applications in imaging, therapy and cosmetics fields.


Blood | 2010

Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy.

Saul J. Priceman; James L. Sung; Shaposhnik Z; Jeremy B. Burton; Antoni X. Torres-Collado; Diana Moughon; Mai Johnson; Lusis Aj; Cohen Da; Iruela-Arispe Ml; Lily Wu

Tumor-infiltrating myeloid cells (TIMs) support tumor growth by promoting angiogenesis and suppressing antitumor immune responses. CSF-1 receptor (CSF1R) signaling is important for the recruitment of CD11b(+)F4/80(+) tumor-associated macrophages (TAMs) and contributes to myeloid cell-mediated angiogenesis. However, the impact of the CSF1R signaling pathway on other TIM subsets, including CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs), is unknown. Tumor-infiltrating MDSCs have also been shown to contribute to tumor angiogenesis and have recently been implicated in tumor resistance to antiangiogenic therapy, yet their precise involvement in these processes is not well understood. Here, we use the selective pharmacologic inhibitor of CSF1R signaling, GW2580, to demonstrate that CSF-1 regulates the tumor recruitment of CD11b(+)Gr-1(lo)Ly6C(hi) mononuclear MDSCs. Targeting these TIM subsets inhibits tumor angiogenesis associated with reduced expression of proangiogenic and immunosuppressive genes. Combination therapy using GW2580 with an anti-VEGFR-2 antibody synergistically suppresses tumor growth and severely impairs tumor angiogenesis along with reverting at least one TIM-mediated antiangiogenic compensatory mechanism involving MMP-9. These data highlight the importance of CSF1R signaling in the recruitment and function of distinct TIM subsets, including MDSCs, and validate the benefits of targeting CSF1R signaling in combination with antiangiogenic drugs for the treatment of solid cancers.


Cancer Research | 2013

CSF1R Signaling Blockade Stanches Tumor-Infiltrating Myeloid Cells and Improves the Efficacy of Radiotherapy in Prostate Cancer

Jingying Xu; Jemima Escamilla; Stephen Mok; John R. David; Saul J. Priceman; Brian L. West; Gideon Bollag; William H. McBride; Lily Wu

Radiotherapy is a major frontline treatment for prostate cancer patients, yet, a large portion of these patients suffer from local tumor recurrence. Tumor-infiltrating myeloid cells (TIMs), including CD11b+F4/80+ tumor-associated macrophages (TAMs) and CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs), play critical roles in promoting tumor angiogenesis, tissue remodeling and immunosuppression. Here, we show enhanced recruitment of TAMs and MDSCs after local irradiation. Although treatment is directed to the tumor sites, the impact of irradiation is systemic as dramatic increases of MDSCs were observed in the spleen, lung, lymph nodes and peripheral blood. Of the cytokines examined, we found that macrophage colony-stimulating factor 1 (CSF1) increased by 2 fold in irradiated tumors. Enhanced macrophage migration induced by conditioned media from irradiated tumor cells was completely blocked by the selective CSF1R inhibitor, GW2580. Importantly, increased CSF1 levels were also observed in the serum of prostate cancer patients after radiotherapy. ABL1 (c-Abl), a non-receptor tyrosine kinase, known to mediate apoptosis and signal transduction under stress, is activated by irradiation. Activated ABL1 translocates to the nucleus, binds to the CSF1 promoter region and enhances CSF1 transcription. Combination therapy using a CSF1R inhibitor currently in clinical trials, PLX3397, with radiation suppressed tumor growth more effectively than radiation alone. This study highlights the importance of CSF1/CSF1R signaling in the recruitment of TIMs in response to radiotherapy and suggests their significant role in promoting tumor recurrence. Furthermore, our data supports co-targeting TIMs in conjunction with radiotherapy to achieve a more effective and durable treatment strategy for prostate cancer patients.Radiotherapy is used to treat many types of cancer, but many treated patients relapse with local tumor recurrence. Tumor-infiltrating myeloid cells (TIM), including CD11b (ITGAM)(+)F4/80 (EMR1)+ tumor-associated macrophages (TAM), and CD11b(+)Gr-1 (LY6G)+ myeloid-derived suppressor cells (MDSC), respond to cancer-related stresses and play critical roles in promoting tumor angiogenesis, tissue remodeling, and immunosuppression. In this report, we used a prostate cancer model to investigate the effects of irradiation on TAMs and MDSCs in tumor-bearing animals. Unexpectedly, when primary tumor sites were irradiated, we observed a systemic increase of MDSCs in spleen, lung, lymph nodes, and peripheral blood. Cytokine analysis showed that the macrophage colony-stimulating factor CSF1 increased by two-fold in irradiated tumors. Enhanced macrophage migration induced by conditioned media from irradiated tumor cells was completely blocked by a selective inhibitor of CSF1R. These findings were confirmed in patients with prostate cancer, where serum levels of CSF1 increased after radiotherapy. Mechanistic investigations revealed the recruitment of the DNA damage-induced kinase ABL1 into cell nuclei where it bound the CSF1 gene promoter and enhanced CSF1 gene transcription. When added to radiotherapy, a selective inhibitor of CSF1R suppressed tumor growth more effectively than irradiation alone. Our results highlight the importance of CSF1/CSF1R signaling in the recruitment of TIMs that can limit the efficacy of radiotherapy. Furthermore, they suggest that CSF1 inhibitors should be evaluated in clinical trials in combination with radiotherapy as a strategy to improve outcomes.


Cancer Cell | 2012

S1PR1-STAT3 Signaling Is Crucial for Myeloid Cell Colonization at Future Metastatic Sites

Jiehui Deng; Yong Liu; Heehyoung Lee; Andreas Herrmann; Wang Zhang; Chunyan Zhang; Shudan Shen; Saul J. Priceman; Maciej Kujawski; Sumanta K. Pal; Andrew Raubitschek; Dave S.B. Hoon; Stephen J. Forman; Robert A. Figlin; Jie Liu; Richard Jove; Hua Yu

Recent studies underscore the importance of myeloid cells in rendering distant organs hospitable for disseminating tumor cells to colonize. However, what enables myeloid cells to have an apparently superior capacity to colonize distant organs is unclear. Here, we show that S1PR1-STAT3 upregulation in tumor cells induces factors that activate S1PR1-STAT3 in various cells in premetastatic sites, leading to premetastatic niche formation. Targeting either S1PR1 or STAT3 in myeloid cells disrupts existing premetastatic niches. S1PR1-STAT3 pathway enables myeloid cells to intravasate, prime the distant organ microenvironment and mediate sustained proliferation and survival of their own and other stromal cells at future metastatic sites. Analyzing tumor-free lymph nodes from cancer patients shows elevated myeloid infiltrates, STAT3 activity, and increased survival signal.


Cancer Research | 2008

Suppression of Prostate Cancer Nodal and Systemic Metastasis by Blockade of the Lymphangiogenic Axis

Jeremy B. Burton; Saul J. Priceman; James L. Sung; Ebba Brakenhielm; Dong Sung An; Bronislaw Pytowski; Kari Alitalo; Lily Wu

Lymph node involvement denotes a poor outcome for patients with prostate cancer. Our group, along with others, has shown that initial tumor cell dissemination to regional lymph nodes via lymphatics also promotes systemic metastasis in mouse models. The aim of this study was to investigate the efficacy of suppressive therapies targeting either the angiogenic or lymphangiogenic axis in inhibiting regional lymph node and systemic metastasis in subcutaneous and orthotopic prostate tumor xenografts. Both androgen-dependent and more aggressive androgen-independent prostate tumors were used in our investigations. Interestingly, we observed that the threshold for dissemination is lower in the vascular-rich prostatic microenvironment compared with subcutaneously grafted tumors. Both vascular endothelial growth factor-C (VEGF-C) ligand trap (sVEGFR-3) and antibody directed against VEGFR-3 (mF4-31C1) significantly reduced tumor lymphangiogenesis and metastasis to regional lymph nodes and distal vital organs without influencing tumor growth. Conversely, angiogenic blockade by short hairpin RNA against VEGF or anti-VEGFR-2 antibody (DC101) reduced tumor blood vessel density, significantly delayed tumor growth, and reduced systemic metastasis, although it was ineffective in reducing lymphangiogenesis or nodal metastasis. Collectively, these data clarify the utility of vascular therapeutics in prostate tumor growth and metastasis, particularly in the context of the prostate microenvironment. Our findings highlight the importance of lymphangiogenic therapies in the control of regional lymph node and systemic metastasis.


Journal of Clinical Investigation | 2014

CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells

Andreas Herrmann; Saul J. Priceman; Maciej Kujawski; Hong Xin; Gregory Cherryholmes; Wang Zhang; Chunyan Zhang; Christoph Lahtz; Claudia M. Kowolik; S. J. Forman; Marcin Kortylewski; Hua Yu

Intracellular therapeutic targets that define tumor immunosuppression in both tumor cells and T cells remain intractable. Here, we have shown that administration of a covalently linked siRNA to an aptamer (apt) that selectively binds cytotoxic T lymphocyte-associated antigen 4 (CTLA4(apt)) allows gene silencing in exhausted CD8⁺ T cells and Tregs in tumors as well as CTLA4-expressing malignant T cells. CTLA4 expression was upregulated in CD8⁺ T cells in the tumor milieu; therefore, CTLA4(apt) fused to a STAT3-targeting siRNA (CTLA4(apt)-STAT3 siRNA) resulted in internalization into tumor-associated CD8⁺ T cells and silencing of STAT3, which activated tumor antigen-specific T cells in murine models. Both local and systemic administration of CTLA4(apt)-STAT3 siRNA dramatically reduced tumor-associated Tregs. Furthermore, CTLA4(apt)-STAT3 siRNA potently inhibited tumor growth and metastasis in various mouse tumor models. Importantly, CTLA4 expression is observed in T cells of patients with blood malignancies, and CTLA4(apt)-STAT3 siRNA treatment of immunodeficient mice bearing human T cell lymphomas promoted tumor cell apoptosis and tumor growth inhibition. These data demonstrate that a CTLA4(apt)-based siRNA delivery strategy allows gene silencing in both tumor-associated T cells and tumor cells and inhibits tumor growth and metastasis.


Molecular Therapy | 2015

Chimeric Antigen Receptors With Mutated IgG4 Fc Spacer Avoid Fc Receptor Binding and Improve T Cell Persistence and Antitumor Efficacy

Mahesh Jonnalagadda; Armen Mardiros; Ryan Urak; Xiuli Wang; Lauren Hoffman; Alyssa Bernanke; Wen-Chung Chang; William Bretzlaff; Renate Starr; Saul J. Priceman; Julie R. Ostberg; Stephen J. Forman; Christine E. Brown

The success of adoptive therapy using chimeric antigen receptor (CAR)-expressing T cells partly depends on optimal CAR design. CARs frequently incorporate a spacer/linker region based on the constant region of either IgG1 or IgG4 to connect extracellular ligand-binding with intracellular signaling domains. Here, we evaluated the potential for the IgG4-Fc linker to result in off-target interactions with Fc gamma receptors (FcγRs). As proof-of-principle, we focused on a CD19-specific scFv-IgG4-CD28-zeta CAR and found that, in contrast to CAR-negative cells, CAR+ T cells bound soluble FcγRs in vitro and did not engraft in NSG mice. We hypothesized that mutations to avoid FcγR binding would improve CAR+ T cell engraftment and antitumor efficacy. Thus, we generated CD19-specific CARs with IgG4-Fc spacers that had either been mutated at two sites (L235E; N297Q) within the CH2 region (CD19R(EQ)) or incorporated a CH2 deletion (CD19Rch2Δ). These mutations reduced binding to soluble FcγRs without altering the ability of the CAR to mediate antigen-specific lysis. Importantly, CD19R(EQ) and CD19Rch2Δ T cells exhibited improved persistence and more potent CD19-specific antilymphoma efficacy in NSG mice. Together, these studies suggest that optimal CAR function may require the elimination of cellular FcγR interactions to improve T cell persistence and antitumor responses.


Cancer Research | 2015

CSF1 Receptor Targeting in Prostate Cancer Reverses Macrophage-Mediated Resistance to Androgen Blockade Therapy

Jemima Escamilla; Shiruyeh Schokrpur; Connie Liu; Saul J. Priceman; Diana Moughon; Ziyue Jiang; Frédéric Pouliot; Clara E. Magyar; James L. Sung; Jingying Xu; Gang Deng; Brian L. West; Gideon Bollag; Yves Fradet; Louis Lacombe; Michael E. Jung; Jiaoti Huang; Lily Wu

Growing evidence suggests that tumor-associated macrophages (TAM) promote cancer progression and therapeutic resistance by enhancing angiogenesis, matrix-remodeling, and immunosuppression. In this study, prostate cancer under androgen blockade therapy (ABT) was investigated, demonstrating that TAMs contribute to prostate cancer disease recurrence through paracrine signaling processes. ABT induced the tumor cells to express macrophage colony-stimulating factor 1 (M-CSF1 or CSF1) and other cytokines that recruit and modulate macrophages, causing a significant increase in TAM infiltration. Inhibitors of CSF1 signaling through its receptor, CSF1R, were tested in combination with ABT, demonstrating that blockade of TAM influx in this setting disrupts tumor promotion and sustains a more durable therapeutic response compared with ABT alone.


PLOS ONE | 2013

Icaritin Inhibits JAK/STAT3 Signaling and Growth of Renal Cell Carcinoma

Shasha Li; Saul J. Priceman; Hong Xin; Wang Zhang; Jiehui Deng; Yong Liu; Jiabin Huang; Wenshan Zhu; Mingjie Chen; Wei Hu; Xiaomin Deng; Jian Zhang; Hua Yu; Guangyuan He

Signal transducer and activator of transcription-3 (STAT3) is critical for cancer progression by regulating tumor cell survival, proliferation, and angiogenesis. Herein, we investigated the regulation of STAT3 activation and the therapeutic effects of Icaritin, a prenyl flavonoid derivative from Epimedium Genus, in renal cell carcinoma (RCC). Icaritin showed significant anti-tumor activity in the human and mouse RCC cell lines, 786-O and Renca, respectively. Icaritin inhibited both constitutive and IL-6-induced phospho-STAT3 (STAT3Y705) and reduced the level of STAT3-regulated proteins Bcl-xL, Mcl-1, Survivin, and CyclinD1 in a dose-dependent manner. Icaritin also inhibited activation of Janus-activated kinase-2 (JAK2), while it showed minimal effects on the activation of other key signaling pathways, including AKT and MAPK. Expression of the constitutively active form of STAT3 blocked Icaritin-induced apoptosis, while siRNA directed against STAT3 potentiated apoptosis. Finally, Icaritin significantly blunted RCC tumor growth in vivo, reduced STAT3 activation, and inhibited Bcl-xL and Cyclin E, as well as VEGF expression in tumors, which was associated with reduced tumor angiogenesis. Overall, these results suggest that Icaritin strongly inhibits STAT3 activation and is a potentially effective therapeutic option for the treatment of renal cell carcinoma.

Collaboration


Dive into the Saul J. Priceman's collaboration.

Top Co-Authors

Avatar

Lily Wu

University of California

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Forman

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Christine E. Brown

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hua Yu

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Wen-Chung Chang

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Anthony Park

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ethan Gerdts

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dileshni Tilakawardane

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jiehui Deng

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sarah Wright

City of Hope National Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge