Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saul N. Faust is active.

Publication


Featured researches published by Saul N. Faust.


The New England Journal of Medicine | 2001

Dysfunction of endothelial protein C activation in severe meningococcal sepsis

Saul N. Faust; Michael Levin; Odile B. Harrison; Robert D. Goldin; Marion S. Lockhart; Sheila Kondaveeti; Zoltan Laszik; Charles T. Esmon; Robert S. Heyderman

BACKGROUND Impairment of the protein C anticoagulation pathway is critical to the thrombosis associated with sepsis and to the development of purpura fulminans in meningococcemia. We studied the expression of thrombomodulin and the endothelial protein C receptor in the dermal microvasculature of children with severe meningococcemia and purpuric or petechial lesions. METHODS We assessed the integrity of the endothelium and the expression of thrombomodulin and the endothelial protein C receptor in biopsy specimens of purpuric lesions from 21 children with meningococcal sepsis (median age, 41 months), as compared with control skin-biopsy specimens. RESULTS The expression of endothelial thrombomodulin and of the endothelial protein C receptor was lower in the patients with meningococcal sepsis than in the controls, both in vessels with thrombosis and in vessels without thrombosis. On electron microscopical examination, the endothelial cells were generally intact in both thrombosed and nonthrombosed vessels. Plasma thrombomodulin levels in the children with meningococcal sepsis (median, 6.4 ng per liter) were higher than those in the controls (median, 3.6 ng per liter; P=0.002). Plasma levels, protein C antigen, protein S antigen, and antithrombin antigen were lower than those in the controls. In two patients treated with unactivated protein C concentrate, activated protein C was undetectable at the time of admission, and plasma levels remained low. CONCLUSIONS In severe meningococcal sepsis, protein C activation is impaired, a finding consistent with down-regulation of the endothelial thrombomodulin-endothelial protein C receptor pathway.


Clinical Infectious Diseases | 2012

Preliminary Assessment of the Efficacy of a T-Cell–Based Influenza Vaccine, MVA-NP+M1, in Humans

Patrick J. Lillie; Tamara Berthoud; Timothy J. Powell; Teresa Lambe; Caitlin E. Mullarkey; Alexandra J. Spencer; Matthew Hamill; Yanchun Peng; Marie Eve Blais; Christopher J. A. Duncan; Susanne H. Sheehy; Tom Havelock; Saul N. Faust; Rob Lambkin Williams; Anthony Gilbert; John Oxford; Tao Dong; Adrian V. S. Hill; Sarah C. Gilbert

A single vaccination with MVA-NP+M1 boosts T-cell responses to conserved influenza antigens in humans. Protection against influenza disease and virus shedding was demonstrated in an influenza virus challenge study.


BMJ | 2010

Safety and immunogenicity of AS03B adjuvanted split virion versus non-adjuvanted whole virion H1N1 influenza vaccine in UK children aged 6 months-12 years: open label, randomised, parallel group, multicentre study.

Claire S. Waddington; Woolf T. Walker; Clarissa Oeser; A Reiner; Tessa M. John; S Wilkins; Michelle Casey; P Eccleston; Ruth J. Allen; Ifeanyichukwu O. Okike; Shamez Ladhani; Elizabeth Sheasby; Katja Hoschler; Nick Andrews; Pauline Waight; Andrew Collinson; Paul T. Heath; Adam Finn; Saul N. Faust; Matthew D. Snape; Elizabeth Miller; Andrew J. Pollard

Objectives To compare the safety, reactogenicity, and immunogenicity of an adjuvanted split virion H1N1 vaccine and a non-adjuvanted whole virion vaccine used in the pandemic immunisation programme in the United Kingdom. Design Open label, randomised, parallel group, phase II study. Setting Five UK centres (Oxford, Southampton, Bristol, Exeter, and London). Participants Children aged 6 months to less than 13 years for whom a parent or guardian had provided written informed consent and who were able to comply with study procedures were eligible. Those with laboratory confirmed pandemic H1N1 influenza or clinically diagnosed disease meriting antiviral treatment, allergy to egg or any other vaccine components, or coagulation defects, or who were severely immunocompromised or had recently received blood products were excluded. Children were grouped by age: 6 months-<3 years (younger group) and 3-<13 years (older group). Recruitment was by media advertising and direct mailing. Recruitment visits were attended by 949 participants, of whom 943 were enrolled and 937 included in the per protocol analysis. Interventions Participants were randomised 1:1 to receive AS03B (tocopherol based oil in water emulsion) adjuvanted split virion vaccine derived from egg culture or non-adjuvanted whole virion vaccine derived from cell culture. Both were given as two doses 21 days apart. Reactogenicity data were collected for one week after immunisation by diary card. Serum samples were collected at baseline and after the second dose. Main outcome measures Primary reactogenicity end points were frequency and severity of fever, tenderness, swelling, and erythema after vaccination. Immunogenicity was measured by microneutralisation and haemagglutination inhibition assays. The primary immunogenicity objective was a comparison between vaccines of the percentage of participants showing seroconversion by the microneutralisation assay (fourfold rise to a titre of ≥1:40 from before vaccination to three weeks after the second dose). Results Seroconversion rates were higher after the adjuvanted split virion vaccine than after the whole virion vaccine, most notably in the youngest children (163 of 166 participants with paired serum samples (98.2%, 95% confidence interval 94.8% to 99.6%) v 157 of 196 (80.1%, 73.8% to 85.5%), P<0.001) in children under 3 years and 226 of 228 (99.1%, 96.9% to 99.9%) v 95.9%, 92.4% to 98.1%, P=0.03) in those over 3 years). The adjuvanted split virion vaccine was more reactogenic than the whole virion vaccine, with more frequent systemic reactions and severe local reactions in children aged over 5 years after dose one (13 (7.2%, 3.9% to 12%) v 2 (1.1%, 0.1% to 3.9%), P<0.001) and dose two (15 (8.5%, 4.8% to 13.7%) v 2 (1.1%, 0.1% to 4.1%), P<0.002) and after dose two in those under 5 years (15 (5.9%, 3.3% to 9.6%) v 0 (0.0%, 0% to 1.4%), P<0.001). Dose two of the adjuvanted split virion vaccine was more reactogenic than dose one, especially for fever ≥38ºC in those aged under 5 (24 (8.9%, 5.8% to 12.9%) v 57 (22.4%, 17.5% to 28.1%), P<0.001). Conclusions In this first direct comparison of an AS03B adjuvanted split virion versus whole virion non-adjuvanted H1N1 vaccine, the adjuvanted vaccine, while more reactogenic, was more immunogenic and, importantly, achieved high seroconversion rates in children aged less than 3 years. This indicates the potential for improved immunogenicity of influenza vaccines in this age group. Trial registration Clinical trials.gov NCT00980850; ISRCTN89141709.


The Lancet | 2014

Effect of a quadrivalent meningococcal ACWY glycoconjugate or a serogroup B meningococcal vaccine on meningococcal carriage: an observer-blind, phase 3 randomised clinical trial

Robert C. Read; David Baxter; David Chadwick; Saul N. Faust; Adam Finn; Stephen B. Gordon; Paul T. Heath; David J. M. Lewis; Andrew J. Pollard; David P. J. Turner; Rohit Bazaz; Amitava Ganguli; Tom Havelock; Keith R. Neal; Ifeanyichukwu O. Okike; Begonia Morales-Aza; Kamlesh Patel; Matthew D. Snape; John Williams; Stefanie Gilchrist; Steve J. Gray; Martin C. J. Maiden; Daniela Toneatto; Huajun Wang; Maggie McCarthy; Peter M. Dull; Ray Borrow

BACKGROUND Meningococcal conjugate vaccines protect individuals directly, but can also confer herd protection by interrupting carriage transmission. We assessed the effects of meningococcal quadrivalent glycoconjugate (MenACWY-CRM) or serogroup B (4CMenB) vaccination on meningococcal carriage rates in 18-24-year-olds. METHODS In this phase 3, observer-blind, randomised controlled trial, university students aged 18-24 years from ten sites in England were randomly assigned (1:1:1, block size of three) to receive two doses 1 month apart of Japanese Encephalitis vaccine (controls), 4CMenB, or one dose of MenACWY-CRM then placebo. Participants were randomised with a validated computer-generated random allocation list. Participants and outcome-assessors were masked to the treatment group. Meningococci were isolated from oropharyngeal swabs collected before vaccination and at five scheduled intervals over 1 year. Primary outcomes were cross-sectional carriage 1 month after each vaccine course. Secondary outcomes included comparisons of carriage at any timepoint after primary analysis until study termination. Reactogenicity and adverse events were monitored throughout the study. Analysis was done on the modified intention-to-treat population, which included all enrolled participants who received a study vaccination and provided at least one assessable swab after baseline. This trial is registered with ClinicalTrials.gov, registration number NCT01214850. FINDINGS Between Sept 21 and Dec 21, 2010, 2954 participants were randomly assigned (987 assigned to control [984 analysed], 979 assigned to 4CMenB [974 analysed], 988 assigned to MenACWY-CRM [983 analysed]); 33% of the 4CMenB group, 34% of the MenACWY-CRM group, and 31% of the control group were positive for meningococcal carriage at study entry. By 1 month, there was no significant difference in carriage between controls and 4CMenB (odds ratio 1·2, 95% CI 0·8-1·7) or MenACWY-CRM (0·9, [0·6-1·3]) groups. From 3 months after dose two, 4CMenB vaccination resulted in significantly lower carriage of any meningococcal strain (18·2% [95% CI 3·4-30·8] carriage reduction), capsular groups BCWY (26·6% [10·5-39·9] carriage reduction), capsular groups CWY (29·6% [8·1-46·0] carriage reduction), and serogroups CWY (28·5% [2·8-47·5] carriage reduction) compared with control vaccination. Significantly lower carriage rates were also noted in the MenACWY-CRM group compared with controls: 39·0% (95% CI 17·3-55·0) carriage reduction for serogroup Y and 36·2% (15·6-51·7) carriage reduction for serogroup CWY. Study vaccines were generally well tolerated, with increased rates of transient local injection pain and myalgia in the 4CMenB group. No safety concerns were identified. INTERPRETATION Although we detected no significant difference between groups at 1 month after vaccine course, MenACWY-CRM and 4CMenB vaccines reduced meningococcal carriage rates during 12 months after vaccination and therefore might affect transmission when widely implemented. FUNDING Novartis Vaccines.


Molecular Therapy | 2012

ChAd63-MVA-vectored blood-stage malaria vaccines targeting MSP1 and AMA1: assessment of efficacy against mosquito bite challenge in humans

Susanne H. Sheehy; Christopher J. A. Duncan; Sean C. Elias; Prateek Choudhary; Sumi Biswas; Fenella D. Halstead; Katharine A. Collins; Nick J. Edwards; Alexander D. Douglas; Nicholas A. Anagnostou; Katie Ewer; Tom Havelock; Tabitha Mahungu; Carly M. Bliss; Kazutoyo Miura; Ian D. Poulton; Patrick J. Lillie; Richard D. Antrobus; Eleanor Berrie; Sarah Moyle; Katherine Gantlett; Stefano Colloca; Riccardo Cortese; Carole A. Long; Robert E. Sinden; Sarah C. Gilbert; Alison M. Lawrie; Tom Doherty; Saul N. Faust; Alfredo Nicosia

The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1-results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets.


Pediatric Infectious Disease Journal | 2010

Immunogenicity and reactogenicity of a 13-valent-pneumococcal conjugate vaccine administered at 2, 4, and 12 months of age: a double-blind randomized active-controlled trial.

Matthew D. Snape; Chaam L. Klinger; Elvis D. Daniels; Tessa M. John; Helen Layton; Llinos Rollinson; Sarah Pestridge; Sandra Dymond; Eva P. Galiza; Susan P. Tansey; Daniel A. Scott; Sherryl Baker; Thomas R. Jones; Ly-Mee Yu; William C. Gruber; Emilio A. Emini; Saul N. Faust; Adam Finn; Paul T. Heath; Andrew J. Pollard

Background: A 2-, 4-, and 12-month schedule of a novel 13-valent-pneumococcal conjugate vaccine (PCV13), containing serotype 1, 3, 4, 5, 6A, 6B 7F, 9V, 14, 18C, 19A, 19F, and 23F polysaccharides individually conjugated to CRM197 was evaluated in a randomized, double-blind, controlled infant study. Methods: Two hundred eighty-six healthy infants received PCV13 or the 7-valent-pneumococcal conjugate vaccine (PCV7) at 2, 4, and 12 months of age, alongside a serogroup C meningococcal (MenC) vaccine (2 and 4 months of age), DTaP-IPV-Hib (2, 3, and 4 months), and a Hib-MenC vaccine (12 months). Specific antibody responses were assessed at age 5, 12, and 13 months. Results: At 13 months of age, >97% of PCV13 recipients had pneumococcal serotype-specific serum IgG concentrations ≥0.35 &mgr;g/mL for each vaccine serotype except serotype 3 (88.2%), and at least 93% of PCV13 recipients had OPA titers ≥1:8 for each serotype. At 5 months, 110/114 (96.5%) of PCV13 recipients and 100/102 (98.0%) of PCV7 recipients had serum anti-PRP (Hib) IgG concentration ≥0.15 &mgr;g/mL (difference, 1.5%; CI, −7.1%–3.7%), while 119/120 (99.2%) and 117/118 (99.2%), respectively, had MenC serum bactericidal assay titers of ≥1:8. All PCV13 recipients and 110/113 (97.3%) of PCV7 recipients had IgG concentrations against fimbrial agglutinogens of ≥2.2 EU/mL; IgG concentrations for the remaining pertussis antigens were ≥5 EU/mL for all participants. Local reactions and systemic events were similar in the PCV13 and PCV7 groups. Conclusions: A 2-, 4-, and 12-month course of PCV13 was immunogenic for all 13 vaccine serotypes and was well tolerated.


Science | 2013

Ribosomal Protein SA Haploinsufficiency in Humans with Isolated Congenital Asplenia

Alexandre Bolze; Nizar Mahlaoui; Minji Byun; Bridget Turner; Nikolaus S. Trede; Steven R. Ellis; Avinash Abhyankar; Yuval Itan; Etienne Patin; Samuel Brebner; Paul Sackstein; Anne Puel; Capucine Picard; Laurent Abel; Lluis Quintana-Murci; Saul N. Faust; Anthony P. Williams; Richard Baretto; Michael Duddridge; Usha Kini; Andrew J. Pollard; Catherine Gaud; Pierre Frange; Daniel Orbach; Jean-François Emile; Jean-Louis Stephan; Ricardo U. Sorensen; Alessandro Plebani; Lennart Hammarström; Mary Ellen Conley

Spleen Knockout Explained Isolated congenital asplenia (ICA) is a rare disorder where patients are born without a spleen and are at increased risk of bacterial infection but have no other developmental abnormalities. Through sequence analysis of familial and sporadic cases, Bolze et al. (p. 976, published online 11 April) found that ICA patients carry mutations in the gene encoding ribosomal protein SA and as a result express about half the normal amount of this protein. The mechanism by which reduced expression of a housekeeping protein causes an organ-specific defect remains unclear. A rare human disorder, characterized by the absence of a spleen at birth, is associated with mutations in a ribosomal protein. Isolated congenital asplenia (ICA) is characterized by the absence of a spleen at birth in individuals with no other developmental defects. The patients are prone to life-threatening bacterial infections. The unbiased analysis of exomes revealed heterozygous mutations in RPSA in 18 patients from eight kindreds, corresponding to more than half the patients and over one-third of the kindreds studied. The clinical penetrance in these kindreds is complete. Expression studies indicated that the mutations carried by the patients—a nonsense mutation, a frameshift duplication, and five different missense mutations—cause autosomal dominant ICA by haploinsufficiency. RPSA encodes ribosomal protein SA, a component of the small subunit of the ribosome. This discovery establishes an essential role for RPSA in human spleen development.


Archives of Disease in Childhood | 2003

Pathophysiology of meningococcal meningitis and septicaemia

N Pathan; Saul N. Faust; Michael Levin

Neisseria meningitidis is remarkable for the diversity of interactions that the bacterium has with the human host, ranging from asymptomatic nasopharyngeal colonisation affecting virtually all members of the population; through focal infections of the meninges, joints, or eye; to the devastating and often fatal syndrome of meningococcal septic shock and purpura fulminans.


Critical Care Medicine | 2001

Coagulation in severe sepsis: a central role for thrombomodulin and activated protein C

Saul N. Faust; Robert S. Heyderman; Michael Levin

ObjectivesTo review the mechanisms that cause coagulation abnormalities in sepsis, focusing on the interaction between the vascular endothelium and the circulating coagulation factors, particularly the role of the protein C pathway and thrombomodulin. Data Sources/Study Selection Published research abstracts and review articles on the experimental and clinical investigation of the pathophysiology of disseminated intravascular coagulation in sepsis. Data Extraction and Synthesis The data provide increasing evidence that the coagulopathy seen in sepsis is a result of a complex imbalance of pro- and anticoagulant pathways. Whereas previous research has largely studied events in the plasma, it is now apparent that reactions on cell surfaces such as the vascular endothelium are important in the control of the regulatory pathways. ConclusionsThe plasma components of the protein C pathway are down-regulated in sepsis. Decreased thrombomodulin expression may cause defective function of the endothelial component of this pathway in septic patients. Treatments must be designed to overcome any functional defect.


The Journal of Infectious Diseases | 2015

Evaluation of the Efficacy of ChAd63-MVA Vectored Vaccines Expressing Circumsporozoite Protein and ME-TRAP Against Controlled Human Malaria Infection in Malaria-Naive Individuals.

Susanne H. Hodgson; Katie Ewer; Carly M. Bliss; Nick J. Edwards; Thomas Rampling; Nicholas A. Anagnostou; Eoghan de Barra; Tom Havelock; Georgina Bowyer; Ian D. Poulton; Simone C. de Cassan; Rhea J. Longley; Joseph J. Illingworth; Alexander D. Douglas; Pooja B. Mange; Katharine A. Collins; Rachel Roberts; Stephen Gerry; Eleanor Berrie; Sarah Moyle; Stefano Colloca; Riccardo Cortese; Robert E. Sinden; Sarah C. Gilbert; Philip Bejon; Alison M. Lawrie; Alfredo Nicosia; Saul N. Faust; Adrian V. S. Hill

Background. Circumsporozoite protein (CS) is the antigenic target for RTS,S, the most advanced malaria vaccine to date. Heterologous prime-boost with the viral vectors simian adenovirus 63 (ChAd63)-modified vaccinia virus Ankara (MVA) is the most potent inducer of T-cells in humans, demonstrating significant efficacy when expressing the preerythrocytic antigen insert multiple epitope–thrombospondin-related adhesion protein (ME-TRAP). We hypothesized that ChAd63-MVA containing CS may result in a significant clinical protective efficacy. Methods. We conducted an open-label, 2-site, partially randomized Plasmodium falciparum sporozoite controlled human malaria infection (CHMI) study to compare the clinical efficacy of ChAd63-MVA CS with ChAd63-MVA ME-TRAP. Results. One of 15 vaccinees (7%) receiving ChAd63-MVA CS and 2 of 15 (13%) receiving ChAd63-MVA ME-TRAP achieved sterile protection after CHMI. Three of 15 vaccinees (20%) receiving ChAd63-MVA CS and 5 of 15 (33%) receiving ChAd63-MVA ME-TRAP demonstrated a delay in time to treatment, compared with unvaccinated controls. In quantitative polymerase chain reaction analyses, ChAd63-MVA CS was estimated to reduce the liver parasite burden by 69%–79%, compared with 79%–84% for ChAd63-MVA ME-TRAP. Conclusions. ChAd63-MVA CS does reduce the liver parasite burden, but ChAd63-MVA ME-TRAP remains the most promising antigenic insert for a vectored liver-stage vaccine. Detailed analyses of parasite kinetics may allow detection of smaller but biologically important differences in vaccine efficacy that can influence future vaccine development. Clinical Trials Registration. NCT01623557.

Collaboration


Dive into the Saul N. Faust's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Finn

University of Bristol

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanjay Patel

University Hospital Southampton NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Tebruegge

University of Southampton

View shared research outputs
Researchain Logo
Decentralizing Knowledge