Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saul Schaefer is active.

Publication


Featured researches published by Saul Schaefer.


Diabetes | 1997

Aldose Reductase Inhibition Protects Diabetic and Nondiabetic Rat Hearts from Ischemic Injury

Ravichandran Ramasamy; Peter J. Oates; Saul Schaefer

Diabetes increases the incidence of cardiovascular disease as well as the complications of myocardial infarction. Studies using animal models of diabetes have demonstrated that the metabolic alterations occurring at the myocyte level may contribute to the severity of ischemic injury in diabetic hearts. Of the several mechanisms being investigated to understand the pathogenesis of diabetic complications, the increased metabolism of glucose via the polyol pathway has received considerable attention. Deviant metabolic regulation due to increased flux through aldose reductase in diabetic hearts may influence the ability of the myocardium to withstand ischemia insult. To determine if aldose reductase inhibition improves tolerance to ischemia, hearts from acute type I diabetic and nondiabetic control rats were isolated and retrograde perfused. Each group was exposed to 1 μmol/l zopolrestat, a specific inhibitor of aldose reductase, for 10 min, followed by 20 min of global ischemia and 60 min of reperfusion in the absence of zopolrestat. Zopolrestat reduced sorbitol levels before ischemia in diabetic hearts. The cytosolic redox state (NADH/NAD+), as measured by lactate-topyruvate ratios, was significantly lowered under baseline, ischemic, and reperfusion conditions in diabetic hearts perfused with zopolrestat. In these diabetic hearts, ATP was significantly higher in zopolrestat hearts during ischemia, as were phosphocreatine and left ventricular–developed pressure on reperfusion. Zopolrestat provided similar metabolic and functional benefits in nondiabetic hearts. Creatine kinase release was reduced by ∼50% in both nondiabetic and diabetic hearts treated with zopolrestat. These data indicate that inhibition of aldose reductase activity preserves high-energy phosphates, maintains a lower cytosolic NADH/NAD+ ratio, and markedly protects both diabetic and nondiabetic hearts during ischemia and reperfusion.


Circulation Research | 2004

NADH Oxidase Activity of Rat Cardiac Sarcoplasmic Reticulum Regulates Calcium-Induced Calcium Release

Gennady Cherednichenko; Aleksey V. Zima; Wei Feng; Saul Schaefer; Lothar A. Blatter; Isaac N. Pessah

Abstract— NADH and Ca2+ have important regulatory functions in cardiomyocytes related to excitation-contraction coupling and ATP production. To elucidate elements of these functions, we examined the effect of NADH on sarcoplasmic reticulum (SR) Ca2+ release and the mechanisms of this regulation. Physiological concentrations of cytosolic NADH inhibited ryanodine receptor type 2 (RyR2)–mediated Ca2+-induced Ca2+ release (CICR) from SR membranes (IC50=120 &mgr;mol/L) and significantly lowered single channel open probability. In permeabilized single ventricular cardiomyocytes, NADH significantly inhibited the amplitude and frequency of spontaneous Ca2+ release. Blockers of electron transport prevented the inhibitory effect of NADH on CICR in isolated membranes and permeabilized cells, as well as on the activity of RyR2 channels reconstituted in lipid bilayer. An endogenous NADH oxidase activity from rat heart copurified with SR enriched with RyR2. A significant contribution by mitochondria was excluded as NADH oxidation by SR exhibited >9-fold higher catalytic activity (8.8 &mgr;mol/mg protein per minute) in the absence of exogenous mitochondrial complex I (ubiquinone) or complex III (cytochrome c) electron acceptors, but was inhibited by rotenone and pyridaben (IC50=2 to 3 nmol/L), antimycin A (IC50=13 nmol/L), and diphenyleneiodonium (IC50=28 &mgr;mol/L). Cardiac junctional SR treated with [3H](trifluoromethyl)diazirinyl-pyridaben specifically labeled a single 23-kDa PSST-like protein. These data indicate that NADH oxidation is tightly linked to, and essential for, negative regulation of the RyR2 complex and is a likely component of an important physiological negative-feedback mechanism coupling SR Ca2+ fluxes and mitochondrial energy production.


Circulation | 1995

Myocardial High-Energy Phosphate and Substrate Metabolism in Swine With Moderate Left Ventricular Hypertrophy

Barry M. Massie; Saul Schaefer; Jorge A. Garcia; M. Dan McKirnan; Gregory G. Schwartz; Judith A. Wisneski; Michael W. Weiner; Francis C. White

BACKGROUND Although left ventricular hypertrophy (LVH) is frequently associated with impaired coronary vasodilator reserve, it is uncertain whether this leads to myocardial ischemia under physiological conditions. The goal of the present study was to determine whether swine with moderate LVH exhibit metabolic evidence of ischemia when myocardial oxygen requirements are increased. METHODS AND RESULTS Myocardial metabolism was evaluated in an open-chest anesthetized preparation at baseline and during dobutamine infusion in 13 adolescent pigs with moderate LVH induced by supravalvular aortic banding and 12 age-matched control pigs. Transmural myocardial blood flow was quantified with radioactive microspheres; the ratio of phosphocreatine to ATP (PCr/ATP) in the anterior LV free wall was measured by 31P-nuclear magnetic resonance; and anterior wall lactate release was quantified from the arterial-coronary venous difference in 14C- or 13C-labeled lactate. In a subset of 5 animals from each group, the metabolic fate of exogenous glucose was determined from the transmyocardial difference in 6-14C-glucose and its metabolites 14C-lactate and 14CO2. Coronary reserve, as assessed by the ratio of blood flow during adenosine infusion to baseline blood flow, was significantly lower in the LVH pigs compared with controls (3.5 +/- 0.4 versus 5.5 +/- 0.4 mL/g.min, P < .05); however, transmural myocardial blood flow was similar in both groups of pigs, both at baseline and with dobutamine stimulation, probably reflecting the higher coronary perfusion pressure in the LVH pigs. At baseline, PCr/ATP tended to be lower in the LVH pigs (P = .09) but decreased similarly with dobutamine infusion in both groups. Isotopically measured anterior wall lactate release did not differ between the groups at baseline, nor did the increase in lactate release differ during dobutamine stimulation. The uptake of glucose, lactate, and free fatty acids did not differ between the groups in the basal state. However, during dobutamine stimulation, glucose uptake was greater in the LVH group (0.84 +/- 0.09 mumol/g.min versus 0.59 +/- 0.08 mumol/g.min, P < .05). In a subset of animals, 14C-glucose was used to assess glucose oxidation. These data showed that the LVH animals had a greater rate of glucose oxidation (0.6 +/- 0.10 versus 0.28 +/- 0.08 mumol/g.min, P < .05) and a greater rate of glucose conversion to lactate (0.20 +/- 0.04 versus 0.09 +/- 0.02 mumol/g.min, P < .05) compared with the control pigs. CONCLUSIONS These results suggest that despite their reduced coronary vasodilator reserve and the absence of a greater rise in myocardial blood flow to compensate for a substantially higher LV double product, pigs with this model of moderate LVH do not exhibit a greater susceptibility to myocardial ischemia during dobutamine stress. However, LVH pigs exhibit significantly greater use of exogenous glucose during dobutamine stress, as evidenced by increases in both glucose oxidation and anaerobic glycolysis.


Journal of Clinical Investigation | 1995

Ischemic preconditioning stimulates sodium and proton transport in isolated rat hearts.

Ravichandran Ramasamy; Hong Liu; Steven E. Anderson; Jennifer Lundmark; Saul Schaefer

One or more brief periods of ischemia, termed preconditioning, dramatically limits infarct size and reduces intracellular acidosis during subsequent ischemia, potentially via enhanced sarcolemmal proton efflux mechanisms. To test the hypothesis that preconditioning increases the functional activity of sodium-dependent proton efflux pathways, isolated rat hearts were subjected to 30 min of global ischemia with or without preconditioning. Intracellular sodium (Nai) was assessed using 23Na magnetic resonance spectroscopy, and the activity of the Na-H exchanger and Na-K-2Cl cotransporter was measured by transiently exposing the hearts to an acid load (NH4Cl washout). Creatine kinase release was reduced by greater than 60% in the preconditioned hearts (P < 0.05) and was associated with improved functional recovery on reperfusion. Preconditioning increased Nai by 6.24 +/- 2.04 U, resulting in a significantly higher level of Nai before ischemia than in the control hearts. Nai increased significantly at the onset of ischemia (8.48 +/- 1.21 vs. 2.57 +/- 0.81 U, preconditioned vs. control hearts; P < 0.01). Preconditioning did not reduce Nai accumulation during ischemia, but the decline in Nai during the first 5 min of reperfusion was significantly greater in the preconditioned than in the control hearts (13.48 +/- 1.73 vs. 2.54 +/- 0.41 U; P < 0.001). Exposure of preconditioned hearts to ethylisopropylamiloride or bumetanide in the last reperfusion period limited in the increase in Nai during ischemia and reduced the beneficial effects of preconditioning. After the NH4Cl prepulse, preconditioned hearts acidified significantly more than control hearts and had significantly more rapid recovery of pH (preconditioned, delta pH = 0.35 +/- 0.04 U over 5 min; control, delta pH = 0.15 +/- 0.02 U over 5 min). This rapid pH recovery was not affected by inhibition of the Na-K-2Cl cotransporter but was abolished by inhibition of the Na-H exchanger. These results demonstrate that preconditioning alters the kinetics of Nai accumulation during global ischemia as well as proton transport after NH4Cl washout. These observations are consistent with stimulation of the Na-K-2Cl cotransporter and Na-H exchanger by preconditioning.


American Journal of Physiology-heart and Circulatory Physiology | 1998

Metabolic effects of aldose reductase inhibition during low-flow ischemia and reperfusion

Ravichandran Ramasamy; Nathan Trueblood; Saul Schaefer

Several studies have shown that maintenance of glycolysis limits the metabolic and functional consequences of low-flow ischemia. Because diabetic animals are known to have impaired glycolytic metabolism coupled with increased flux through the aldose reductase (AR) pathway, we hypothesized that inhibition of AR would enhance glycolysis and thereby improve metabolic and functional recovery during low-flow ischemia. Hearts ( n = 12) from nondiabetic control and diabetic rats were isolated and retrograde perfused using 11 mM glucose with or without the AR inhibitor zopolrestat (1 μM). Hearts were subjected to 30 min of low-flow ischemia (10% of baseline flow) and 30 min of reperfusion.31P NMR spectroscopy was used to monitor time-dependent changes in phosphocreatine (PCr), ATP, and intracellular pH. Changes in the cytosolic redox ratio of NADH to NAD+ were obtained by measuring the ratio of tissue lactate to pyruvate. Effluent lactate concentrations and oxygen consumption were determined from the perfusate. AR inhibition improved functional recovery in both control and diabetic hearts, coupled with a lower cytosolic redox state and greater effluent lactate concentrations during ischemia. ATP levels during ischemia were significantly higher in AR-inhibited hearts, as was recovery of PCr. In diabetic hearts, AR inhibition also limited acidosis during ischemia and normalized pH recovery on reperfusion. These data demonstrate that AR inhibition maintains higher levels of high-energy phosphates and improves functional recovery upon reperfusion in hearts subjected to low-flow ischemia, consistent with an increase in glycolysis. Accordingly, this approach of inhibiting AR offers a novel method for protecting ischemic myocardium.


Cardiovascular Research | 1997

Glycogen utilization and ischemic injury in the isolated rat heart

Saul Schaefer; Ravichandran Ramasamy

INTRODUCTION Fasting increases myocardial glycogen content and has been shown to limit injury and improve recovery following no-flow ischaemia in the isolated heart. However, the protective role of glycogen loading per se in fed animals has been questioned by data in preconditioned animals showing that reduced glycogenolysis may be protective prior to no-flow ischemia. Therefore, we hypothesized that fasting protects the globally ischemic heart by mechanisms separate from glycogen loading. METHODS Isolated hearts from rats fasted for 24 h were retrogradely perfused using glucose substrate and subjected to 20 min of global no-flow ischemia. Fed rats were identically perfused either under control conditions (glucose substrate) or with an intervention chosen to increase tissue glycogen (glucose plus insulin, [insulin]) prior to ischemia. Functional recovery and creatine kinase (CK) release were measured during reperfusion. Nuclear magnetic resonance spectroscopy was used to measure intracellular pH, phosphorylated glycolytic intermediates and high-energy phosphates, while the lactate and pyruvate contents of the hearts were measured prior to and at the end of ischemia. RESULTS Heart from fasted animals had significantly increased glycogen content prior to ischemia (76.6 +/- 2 vs. 40.9 +/- 3 mumol glu/gdw in control hearts, P < 0.05) as did hearts exposed to insulin (88.6 +/- 10 mumol glu/gdw), but only hearts from fasted animals had greater glycogen utilization during ischemia. Hearts from fasted animals also had lower levels of lactate relative to pyruvate (L/P) under baseline conditions and, on reperfusion, reduced CK release (fasted: 183 +/- 48 versus control: 756 +/- 56 IU/gdw, P < 0.05). Conversely, insulin hearts had increased CK release (1831 +/- 190 IU/gdw, P < 0.001 vs control) and worse functional and metabolic recovery on reperfusion. Compared to the insulin hearts, hearts from fasted animals had both less acidosis and less rapid depletion of ATP during ischemia, as well as lower accumulation of glycolytic intermediates. CONCLUSION Fasting protects the heart from ischemic injury and is associated with a lower L/P ratio and increased glycogen utilization during ischemia. In contrast, increasing glycogen content in hearts from fed animals using insulin limits glycogen utilization, increases ischemic injury, and impairs both functional and metabolic recovery under conditions of 20 min of global no-flow ischemia.


Journal of the American College of Cardiology | 1988

Nuclear magnetic resonance imaging-guided phosphorus-31 spectroscopy of the human heart

Saul Schaefer; Joel R. Gober; Mario Valenza; Gregory S. Karczmar; Gerald B. Matson; S. Albert Camacho; Elias H. Botvinick; Barry M. Massie; Michael W. Weiner

Phosphorus-31 nuclear magnetic resonance spectroscopy can determine the status of high energy phosphates in vivo. However, its application to human cardiac studies requires precise spatial localization without significant contamination from other tissues. Using image-selected in-vivo spectroscopy (ISIS), a technique that allows three-dimensional localization of the volume of interest, 12 subjects were studied to determine the feasibility and reproducibility of phosphorus-31 spectroscopy of the human heart. Nuclear magnetic resonance imaging was performed using a commercial 1.5 tesla system to define the volume of interest. Phosphorus-31 spectra were obtained from the septum and anteroapical region of the left ventricle in 10 studies. Relative peak heights and areas were determined for high energy phosphates. The mean phosphocreatine to adenosine triphosphate ratio was 1.33 +/- 0.19 by height analysis and 1.23 +/- 0.27 by area analysis. Duplicate measurements in four subjects showed a reproducibility of less than or equal to 10% in three of the subjects. All spectra showed significant signal contribution from the 2,3 diphosphoglycerate in chamber red cells without evidence of skeletal muscle contamination. These results demonstrate the feasibility of image-guided phosphorus-31 spectroscopy for human cardiac studies and indicate the potential of this technique to study metabolic disturbances in human myocardial disease.


Journal of Molecular and Cellular Cardiology | 1995

Requirement of glycolytic substrate for metabolic recovery during moderate low flow ischemia

Saul Schaefer; Erik Prussel; Laurence J. Carr

Low flow ischemia with stable hemodynamic function can result in partial metabolic recovery characterized by an increase in phosphocreatine (PCr). Prior data suggest that glycolytic production of adenosine triphosphate (ATP) may be critical for this recovery and that the ATP produced by oxidative phosphorylation alone may be insufficient. This study tested the hypotheses that, during moderate low flow ischemia, (a) metabolic recovery is dependent on glycolytic production of ATP, and, therefore, (b) a mitochondrial substrate such as pyruvate alone is inadequate to allow metabolic recovery. High energy phosphates, pH, and lactate release were measured during 2 h of moderate low flow ischemia. Hearts were perfused with either a glycolytic plus mitochondrial substrate (glucose, insulin and pyruvate) or a mitochondrial substrate alone (pyruvate). Flow reductions required to reduce PCr by approximately 8% resulted in stable and equal reductions of rate-pressure product in each group. PCr recovered fully during the ischemic period in control hearts with glycolytic substrate, associated with preservation of normal end-diastolic pressure, and increased lactate release during the first hour of ischemia. Reperfusion of these hearts restored hemodynamic function and increased PCr above baseline values. In contrast, the use of pyruvate alone as a substrate resulted in a progressive fall of PCr during ischemia, increased end-diastolic pressure, and no significant increase in lactate release. Reperfusion in these hearts restored hemodynamic function, but did not result in normalization of PCr. Both groups had significant reductions in ATP during ischemia. Recovery of PCr during ongoing moderate low flow ischemia is observed in the presence of mixed glycolytic and mitochondrial substrates (glucose, insulin and pyruvate) but is not observed with pyruvate as a sole mitochondrial substrate. These data support a critical role for glycolytic flux under these conditions, suggesting that ATP generated solely by oxidative phosphorylation is not sufficient to promote metabolic recovery or maintain diastolic function during moderate low flow ischemia.


American Journal of Cardiology | 1997

Blockade of KATP Channels With Glibenclamide Does Not Abolish Preconditioning During Demand Ischemia

Steven D. Correa; Saul Schaefer

The role of adenosine triphosphate-sensitive potassium channels in the adaptive response to demand ischemia was tested in 22 patients treated with placebo or glibenclamide before sequential exercise testing or atrial pacing. Glibenclamide did not affect the improvement in signs of ischemia in both protocols, indicating that opening of these channels is not a mechanism of this adaptive response in humans.


Investigative Radiology | 1991

Contrast-enhanced magnetic resonance imaging of hypoperfused myocardium

Saul Schaefer; Richard A. Lange; Dorothy P. Gutekunst; Robert W. Parkey; James T. Willerson

Contrast-enhanced magnetic resonance (MR) imaging can define myocardial perfusion defects due to acute coronary occlusion. However, since most clinically important diagnostic examinations involve coronary arteries with subtotal stenoses, we investigated the ability of MR imaging with a manganese contrast agent to detect perfusion abnormalities in a canine model of partial coronary artery stenosis. The contrast agent was administered after the creation of a partial coronary artery stenosis with the addition of the coronary vasodilator dipyridamole in six of 12 animals. The hearts were imaged ex situ using gradient reversal and spin-echo sequences, and images were analyzed to determine differences in signal intensity between hypoperfused and normally perfused myocardium. Comparison of MR images with regional blood flow and thallium-201 measurements showed good concordance of hypoperfused segments in those animals given dipyridamole, with 75% of the abnormal segments correctly identified. In those animals not given dipyridamole, 48% of segments were correctly identified. Thus, ex vivo MR imaging with a paramagnetic contrast enhancement can be used to detect acute regional myocardial perfusion abnormalities due to severe partial coronary artery stenoses.

Collaboration


Dive into the Saul Schaefer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory G. Schwartz

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Hong Liu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matt Eaton

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Feng Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Sean Steinman

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge