Saumya Banerjee
Mansfield University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Saumya Banerjee.
Acta Biomaterialia | 2012
Timothy Sargeant; Arpan Desai; Saumya Banerjee; Atu Agawu; Joshua Stopek
There are limited options for surgeons to repair simple or complex tissue defects due to injury, illness or disease. Consequently, there are few treatments for many serious ailments, including neural-related injuries, myocardial infarction and focal hyaline cartilage defects. Tissue-engineered scaffolds offer great promise for addressing these wide-ranging indications; however, there are many considerations that need to be made when conceptualizing a product. For many applications, an in situ forming scaffold that could completely fill defects with complex geometries, adhere to adjacent tissues and foster cell proliferation would be ideal. Additionally, the scaffold would preferably have tailored mechanical properties similar to native tissues and highly controllable gelation kinetics, and would not require an external trigger, such as ultraviolet light, for gelation. We have developed a unique injectable hydrogel system composed of collagen and multi-armed poly(ethylene glycol) (PEG) that meets all of these criteria. The collagen component enables cellular adhesion and permits enzymatic degradation, while the multi-armed PEG component has amine-reactive chemistry that also binds proteins/tissue and is hydrolytically degradable. We have characterized the mechanical properties, swelling, degradation rates and cytocompatibility of these novel hydrogels. The hydrogels demonstrated tunable mechanics, variable swelling and suitable degradation profiles. Cells adhered and proliferated to near confluence on the hydrogels over 7 days. These data suggest that these collagen and PEG hydrogels exhibit the mechanical, physical and biological properties suitable for use as an injectable tissue scaffold for the treatment of a variety of simple and complex tissue defects.
Archive | 2010
Timothy Sargeant; Gregory Fischvogt; Michael Bettuchi; Gerald Hodgkinson; Joshua Stopek; Arpan Desai; Atu Agawu; Saumya Banerjee
Archive | 2011
Saumya Banerjee; Joshua Stopek; Timothy Sargeant
Archive | 2013
Daniel Broom; Joshua Stopek; Timothy Sargeant; Nicholas Maiorino; Arpan Desai; Saumya Banerjee; Timothy Flavin
Archive | 2011
Timothy Sargeant; Joshua Stopek; Arpan Desai; Atu Agawu; Saumya Banerjee
Archive | 2016
Stanislaw Marczyk; Saumya Banerjee
Archive | 2014
Nicholas Maiorino; Saumya Banerjee; Timothy Sargeant; Arpan Desai
Archive | 2014
Nicholas Maiorino; Saumya Banerjee; Timothy Sargeant; Arpan Desai
Archive | 2014
Katelyn Galer; Justin Williams; Danyel Racenet; Kevin Sniffin; Stanislaw Marczyk; Saumya Banerjee
Archive | 2014
Katelyn Galer; Justin Williams; Danyel Racenet; Kevin Sniffin; Stanislaw Marczyk; Saumya Banerjee