Saverio Fiore
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Saverio Fiore.
Ultrasonics Sonochemistry | 2011
Claudia Belviso; Francesco Cavalcante; Antonio Lettino; Saverio Fiore
The synthesis of zeolites from three samples of fly ash was carried out through a low-temperature (25-60°C) hydrothermal process with a NaOH pre-fusion treatment preceded by sonication. The results were compared with those of conventional hydrothermal syntheses. XRD and SEM investigations demonstrate that the application of ultrasonic treatment facilitates the formation of zeolites at a lower-temperature (25°C) than syntheses not preceded by sonication. No significant difference in type, temperature of crystallization, or amount of zeolites synthesized was noted between the three different samples of fly ash, implying that the chemical composition of fly ash had little influence on the zeolite product within the compositional range of these fly ash precursors. Although there appears to be a correlation between the SiO(2)/Al(2)O(3) ratio of the fly ash and the temperature of zeolite formation by conventional synthesis, no correlation was apparent when ultrasonic pre-treatment was used at low-temperatures.
Waste Management | 2010
Claudia Belviso; Francesco Cavalcante; Saverio Fiore
In this study Italian coal fly ash was converted into several types of zeolite in laboratory experiments with temperatures of crystallization ranging from 35 up to 90 degrees C. Distilled and seawater were used during the hydrothermal synthesis process in separate experiments, after a pre-treatment fusion with NaOH. The results indicate that zeolites could be formed from different kind of Italian coal fly ash at low temperature of crystallization using both distilled and seawater. SEM data and the powder patterns of X-ray diffraction analysis show that faujasite, zeolite ZK-5 and sodalite were synthesized when using both distilled and seawater; zeolite A crystallized only using distilled water. In particular the experiments indicate that the synthesis of zeolite X and zeolite ZK-5 takes place at lower temperatures when using seawater (35 and 45 degrees C, respectively). The formation of sodalite is always competitive with zeolite X which shows a metastable behaviour at higher temperatures (70-90 degrees C). The chemical composition of the fly ash source could be responsible of the differences on the starting time of synthesized zeolite with distilled water, in any case our data show that the formation of specific zeolites takes place always at lower temperatures when using seawater.
Chemical Geology | 1999
F. Javier Huertas; Saverio Fiore; F.J. Huertas; J. Linares
Kaolinite was hydrothermally precipitated starting from amorphous aluminosilicates, with Si/Al ratio from 1.8 to 0.76, at temperatures of 150, 175, 200, 225, and 250°C, at time periods varying from 6 h to 60 days. The solutions were analysed for pH, Si, Al, and K, and their saturation state was calculated by using the computer program SOLMINEQ.88. The solids were studied by surface area, XRD and DTA–TG analyses. Kaolinite was the only crystalline phase found in the products of the runs and its formation and crystallinity depended on time, temperature, and Si/Al ratio of the starting material. The kaolinite yield increased as starting material was aged for longer times. Products synthesized at higher temperature contain more kaolinite which was more crystalline than in the experiments carried out at lower temperature. The gel with Si/Al=0.99 produced the most disordered kaolinite and better crystallinity was obtained from products richest in Al or Si. The process of kaolinite formation was the result of two stages. During the first one aggregates of domains having a kaolinite-like structure were formed. The second stage corresponded to the formation of hexagonally outlined platy crystals. The formation rates indicated that the first stage was approximately one order of magnitude faster than the second stage, with average activation energies of 82±5 kJ mol−1 and 71±5 kJ mol−1, respectively. Si/Al ratio of the starting material exerted only a slight influence on the activation energies. The precipitation rates obtained for the second stage were consistent with literature data and may be considered precipitation rates of kaolinite in hydrothermal environments.
Clays and Clay Minerals | 2005
Iñaki Iriarte; Sabine Petit; F. Javier Huertas; Saverio Fiore; Olivier Grauby; Alain Decarreau; J. Linares
Fe-rich kaolinites were synthesized at 225°C in distilled water from gels with different Fe/Al ratios (0.15, 0.25, 0.35) and with Si/(Al + Fe) = 2. X-ray diffraction patterns of the reaction products showed that kaolinite was the only long-range crystalline phase synthesized. Analytical electron microscopy analyses of individual particles and Fourier transform infrared spectra indicated that Fe3+ was isomorphously incorporated into the kaolinite octahedral sheet and that tetrahedral substitution did not occur. The Fe content hosted in the synthetic kaolinites was similar to that incorporated into its corresponding starting gel. The highest Fe content in the particles reached 30 mol.% of the octahedral occupancy. Increases in the b parameter are proportional to increases in Fe for Al substitution. The extent of isomorphic substitution of Al by Fe is the highest ever reported for both natural and synthetic samples. At the nano-scale, there is no evidence of discontinuity in the solid-solution between the Si2Al2O7 and Si2Al1.4Fe0.6O7 end-members, such as short-range disorder or clustering of Fe and Al in domains.
Clays and Clay Minerals | 1995
Saverio Fiore; F.J. Huertas; F. Huertas; J. Linares
Scanning electron microscopy has revealed the presence of spherical, lath and platy kaolinite in gels with Si/Al atomic ratio ranging from 1.84 to 0.76 that are hydrothermally treated under different temperature and time conditions. Hemispherical structures and excavated zones, at different stages of evolution, have been observed on the surface of the gel grains, indicating that spherical particles do not precipitate from the solution but are generated from the gels. The quantity of spherical particles depends on temperature, time and the chemical composition of the starting gel. Products from starting material with Si/Al ≈ 1 yield the highest quantity of these particles. Being metastable, sphere dissolution controls the chemistry of the solution and consequently the morphology of the precipitating crystals thus producing more elongated, curved and irregular outlines when gels with Si/Al ≈ 1 are hydrothermally treated.
Ultrasonics Sonochemistry | 2013
Claudia Belviso; Francesco Cavalcante; Saverio Fiore
The synthesis of zeolites from fly ash was performed through a low-temperature hydrothermal process with seawater. Compared with the results obtained using the same hydrothermal method but in the absence of sonication, the application of an ultrasonic pre-treatment to the conventional hydrothermal process with seawater reduces the crystallization temperature below that observed when hydrothermal synthesis is performed using distilled water.
Chemosphere | 2010
Claudia Belviso; Francesco Cavalcante; Pietro Ragone; Saverio Fiore
Over the last few years a great deal of research has been carried out in order to develop remediation methods for reducing environmental risks due to polluting metals. Zeolite formation in contaminated soils mixed with coal fly ash could be a useful method to reduce both the availability and the mobility of metals in contaminated areas. In this study a soil sample--treated with coal fly ash and artificially contaminated with a high concentration of Ni--was used for synthesizing zeolite at low temperatures. The role played by this mineral in the immobilization of heavy metal was investigated. The materials were analysed chemically (sequential extraction) and by XRD and SEM-EDS analyses. The synthesis was carried out both in the laboratory and on a bench-scale for 1 year. Zeolite crystallization readily occurred after a month. The presence of Ni does not exert any influence on zeolite formation. On the other hand newly-formed zeolites reduce the toxicity of the element in the polluted soil. A reduction in heavy metal availability was observed after ammonium acetate extraction. The use of the modified BCR three-step sequential extraction (sequential extraction protocol developed by Community Bureau of Reference of the Commission of the European Communities) suggests that Ni mobilization takes place when zeolite structure collapses after the BCR second step. The Ni thus available was mobilized in the third step.
American Mineralogist | 2011
M. Elena Ramos; Chiara Cappelli; Marisa Rozalen; Saverio Fiore; F. Javier Huertas
Abstract The montmorillonite dissolution in saline solutions that mimic synthetic lung fluids (SLF) was investigated to gain knowledge on the clearance mechanisms of inhaled clay particles. Dissolution rates were measured at pH 4 (macrophages) and 7.5 (interstitial fluids) at 37 °C in flow-through reactors. The effect of organic acids was investigated through the addition of lactate, citrate, and glycine (0.15, 1.5, and 15 mmol/L). Lactate or glycine does not markedly affect the montmorillonite dissolution rates at pH 4, but at pH 7.5 there exists a slight inhibitory effect of lactate on the dissolution, probably due to a reduction in the number of reactive surface sites caused by lactate adsorption. Citrate enhances the dissolution rate by 0.5 order of magnitude at pH 4 and more than 1 order of magnitude at pH 7.5, thus indicating the prevalence of the ligand-promoted over the proton-promoted dissolution mechanism under these experimental conditions. The kinetic data were used to estimate the reduction in size of an inhaled clay particle. At pH 7.5, a particle 500 nm in diameter could be reduced 25% in the presence of citrate, whereas the reduction in saline solution would only be 10% after 10 years. Ligand adsorption was measured in batch experiments at pH 2-11 and EQ3NR was used to model the capacity of the ligands to form soluble species of Al. Citrate, glycine, and lactate adsorb onto montmorillonite under acidic conditions, up to 23, 26, and 60 μmol/g, respectively. However, only citrate can complex the released aqueous Al at pH 4 and 7.5, which contributes to enhance dissolution rate and prevents precipitation of gibbsite at pH 7.5. The enhancement of the dissolution rate in acidic citrate solution very likely comes from the formation of surface complexes between the ligand and the edge surface of montmorillonite. In neutral conditions the effect may be also due to the decrease of the activity of Al3+ by formation of aqueous Al-citrate complexes.
Coal Combustion and Gasification Products | 2009
Claudia Belviso; Francesco Cavalcante; Antonio Lettino; Saverio Fiore
A sample of coal fly ash from an Italian thermoelectric power plant was used in order to synthesize zeolite by hydrothermal activation after a pre-treatment fusion with NaOH. The experiments involved were performed at different temperatures of crystallization, ranging from 35 up to 60uC, with seawater and distilled water, separately, during hydrothermal process. A comparison between the results obtained from the use of the different kinds of water showed that at low temperature (35–40 uC) the synthesis yield of zeolite X is higher using seawater as crystallizing agent than using distilled water. This implies a possible application for seawater in the solution to the problem of high water volume involved in the zeolite synthesis on a pilot plant
Chemosphere | 2015
Matilda Mali; Maria Michela Dell’Anna; Piero Mastrorilli; Leonardo Damiani; Nicola Ungaro; Claudia Belviso; Saverio Fiore
Sediment contamination by metals poses significant risks to coastal ecosystems and is considered to be problematic for dredging operations. The determination of the background values of metal and metalloid distribution based on site-specific variability is fundamental in assessing pollution levels in harbour sediments. The novelty of the present work consists of addressing the scope and limitation of analysing port sediments through the use of conventional statistical techniques (such as: linear regression analysis, construction of cumulative frequency curves and the iterative 2σ technique), that are commonly employed for assessing Regional Geochemical Background (RGB) values in coastal sediments. This study ascertained that although the tout court use of such techniques in determining the RGB values in harbour sediments seems appropriate (the chemical-physical parameters of port sediments fit well with statistical equations), it should nevertheless be avoided because it may be misleading and can mask key aspects of the study area that can only be revealed by further investigations, such as mineralogical and multivariate statistical analyses.