Saverio Tardito
University of Parma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Saverio Tardito.
Cancer Cell | 2015
Zachary T. Schug; Barrie Peck; Dylan T. Jones; Qifeng Zhang; Shaun Grosskurth; Israt S. Alam; Louise Goodwin; Elizabeth Smethurst; Susan M. Mason; Karen Blyth; Lynn McGarry; Daniel James; Emma Shanks; Gabriela Kalna; Rebecca E. Saunders; Ming Jiang; Michael Howell; Francois Lassailly; May Zaw Thin; Bradley Spencer-Dene; Gordon Stamp; Niels J. F. van den Broek; Gillian M. Mackay; Vinay Bulusu; Jurre J. Kamphorst; Saverio Tardito; David P. Strachan; Adrian L. Harris; Eric O. Aboagye; Susan E. Critchlow
Summary A functional genomics study revealed that the activity of acetyl-CoA synthetase 2 (ACSS2) contributes to cancer cell growth under low-oxygen and lipid-depleted conditions. Comparative metabolomics and lipidomics demonstrated that acetate is used as a nutritional source by cancer cells in an ACSS2-dependent manner, and supplied a significant fraction of the carbon within the fatty acid and phospholipid pools. ACSS2 expression is upregulated under metabolically stressed conditions and ACSS2 silencing reduced the growth of tumor xenografts. ACSS2 exhibits copy-number gain in human breast tumors, and ACSS2 expression correlates with disease progression. These results signify a critical role for acetate consumption in the production of lipid biomass within the harsh tumor microenvironment.
Current Medicinal Chemistry | 2009
Saverio Tardito; Luciano Marchiò
The chemical properties of copper allow it to take part in many biological functions such as electron transfer, catalysis, and structural shaping. The ability to cycle between +1 and +2 oxidation state is one of the features that has been exploited by organisms throughout the evolutionary process. Since copper is potentially toxic to cells also a finely controlled mechanism for copper handling has evolved. On the other side, many copper complexes were synthesized and tested for their anticancer activity in vitro and in vivo. Their ability to kill cancer cells is mainly related to the induction of an oxidative stress, but recently it emerged their ability to inhibit the proteasome, a protein complex whose proteolitic activity is needed by several cellular process. It has generally been described that the toxic effects of copper complexes leads to cell death either by necrosis or through the activation of the apoptotic process. Evidences are rising about the ability of some copper compounds to induce alternative non-apoptotic form of programmed cell death. Since copper is indispensable for the formation of new blood vessels, angiogenesis, a different antitumor approach based on the administration of copper sequestering agents has been attempted and its effectiveness is currently under evaluation by clinical trials. The proven essentiality of copper for angiogenesis, together with the marked sensitivity shown by several cancer cell lines to the copper toxicity, open a new perspective in the anticancer strategy: exploiting the tumor need of copper to accumulate toxic amount of the metal inside its cells.
Journal of the American Chemical Society | 2011
Saverio Tardito; Irene Bassanetti; Chiara Bignardi; Lisa Elviri; Matteo Tegoni; Claudio Mucchino; Ovidio Bussolati; Renata Franchi-Gazzola; Luciano Marchiò
We report a quantitative structure-activity relationship study of a new class of pyrazole-pyridine copper complexes that establishes a clear correlation between the ability to promote copper accumulation and cytotoxicity. Intracellular metal accumulation is maximized when ligand lipophilicity allows the complex to rapidly cross the membrane. Copper and ligand follow different uptake kinetics and reach different intracellular equilibrium concentrations. These results support a model in which the ligand acts as an ionophore for the metal ion, cycling between intra- and extracellular compartments as dissociated or complexed entities. When treating cancer cells with structurally unrelated disulfiram and pyrazole-pyridine copper complexes, as well as with inorganic copper, the same morphological and molecular changes were reproduced, indicating that copper overload is responsible for the cytotoxic effects. Copper-based treatments drive sensitive cancer cells toward paraptotic cell death, a process hallmarked by endoplasmic reticulum stress and massive vacuolization in the absence of apoptotic features. A lack of caspase activation, as observed in copper-treated dying cells, is a consequence of metal-mediated inhibition of caspase-3. Thus, copper acts simultaneously as an endoplasmic reticulum (ER) stress inducer and a caspase-3 inhibitor, forcing the cell into caspase-independent paraptotic death. The establishment of a mechanism of action common to different copper binding agents provides a rationale for the exploitation of copper toxicity as an anticancer tool.
Nature Cell Biology | 2015
Saverio Tardito; Anaïs Oudin; Shafiq U. Ahmed; Fred Fack; Olivier Keunen; Liang Zheng; Hrvoje Miletic; Per Øystein Sakariassen; Adam Weinstock; Allon Wagner; Susan L. Lindsay; Andreas K. Hock; Susan C. Barnett; Eytan Ruppin; Svein H. Mørkve; Morten Lund-Johansen; Anthony J. Chalmers; Rolf Bjerkvig; Simone P. Niclou; Eyal Gottlieb
L-Glutamine (Gln) functions physiologically to balance the carbon and nitrogen requirements of tissues. It has been proposed that in cancer cells undergoing aerobic glycolysis, accelerated anabolism is sustained by Gln-derived carbons, which replenish the tricarboxylic acid (TCA) cycle (anaplerosis). However, it is shown here that in glioblastoma (GBM) cells, almost half of the Gln-derived glutamate (Glu) is secreted and does not enter the TCA cycle, and that inhibiting glutaminolysis does not affect cell proliferation. Moreover, Gln-starved cells are not rescued by TCA cycle replenishment. Instead, the conversion of Glu to Gln by glutamine synthetase (GS; cataplerosis) confers Gln prototrophy, and fuels de novo purine biosynthesis. In both orthotopic GBM models and in patients, 13C–glucose tracing showed that GS produces Gln from TCA-cycle-derived carbons. Finally, the Gln required for the growth of GBM tumours is contributed only marginally by the circulation, and is mainly either autonomously synthesized by GS-positive glioma cells, or supplied by astrocytes.
Journal of Biological Chemistry | 2009
Saverio Tardito; Claudio Isella; Enzo Medico; Luciano Marchiò; Elena Bevilacqua; Maria Hatzoglou; Ovidio Bussolati; Renata Franchi-Gazzola
The copper(II) complex A0 induces a type of non-apoptotic cell death also known as paraptosis. Paraptosis involves extensive endoplasmic reticulum vacuolization in the absence of caspase activation. A wide panel of human cancer cell lines was used to demonstrate differences in cytotoxicity by the paraptosis-inducing drug A0 and the metal-based pro-apoptotic drug cisplatin. Gene expression profiling of the human fibrosarcoma HT1080 cells showed that, while cisplatin induced p53 targets, A0 up-regulated genes involved in the unfolded protein response (UPR) and response to heavy metals. The cytotoxic effects of A0 were associated with inhibition of the ubiquitin-proteasome system and accumulation of ubiquitinylated proteins, in a manner dependent on protein synthesis. Cycloheximide inhibited the accumulation of ubiquitinylated proteins and hampered A0-induced cell death process. The occurrence of the UPR during A0-induced death process was shown by the increased abundance of spliced XBP1 mRNA, transient eIF2α phosphorylation, and a series of downstream events, including attenuation of global protein synthesis and increased expression of ATF4, CHOP, BIP, and GADD34. Mouse embryonic fibroblasts expressing a mutant eIF2α, which could not be phosphorylated, were more resistant to A0 than wild type cells, pointing to a pro-death role of eIF2α phosphorylation. A0 may thus represent the prototypical member of a new class of compounds that cause paraptotic cell death via mechanisms involving eIF2α phosphorylation and the UPR.
Cell Stem Cell | 2014
Leal Oburoglu; Saverio Tardito; Vanessa Fritz; Stéphanie C. de Barros; Peggy Merida; Marco Craveiro; João I. Mamede; Gaspard Cretenet; Cédric Mongellaz; Xiuli An; Dorota Klysz; Jawida Touhami; Myriam Boyer-Clavel; Jean-Luc Battini; Valérie Dardalhon; Valérie S. Zimmermann; Narla Mohandas; Eyal Gottlieb; Marc Sitbon; Sandrina Kinet; Naomi Taylor
The metabolic state of quiescent hematopoietic stem cells (HSCs) is an important regulator of self-renewal, but it is unclear whether or how metabolic parameters contribute to HSC lineage specification and commitment. Here, we show that the commitment of human and murine HSCs to the erythroid lineage is dependent upon glutamine metabolism. HSCs require the ASCT2 glutamine transporter and active glutamine metabolism for erythroid specification. Blocking this pathway diverts EPO-stimulated HSCs to differentiate into myelomonocytic fates, altering in vivo HSC responses and erythroid commitment under stress conditions such as hemolytic anemia. Mechanistically, erythroid specification of HSCs requires glutamine-dependent de novo nucleotide biosynthesis. Exogenous nucleosides rescue erythroid commitment of human HSCs under conditions of limited glutamine catabolism, and glucose-stimulated nucleotide biosynthesis further enhances erythroid specification. Thus, the availability of glutamine and glucose to provide fuel for nucleotide biosynthesis regulates HSC lineage commitment under conditions of metabolic stress.
Journal of Medicinal Chemistry | 2012
Saverio Tardito; Amelia Barilli; Irene Bassanetti; Matteo Tegoni; Ovidio Bussolati; Renata Franchi-Gazzola; Claudio Mucchino; Luciano Marchiò
This study reports the structure-activity relationship of a series of 8-hydroxoquinoline derivatives (8-HQs) and focuses on the cytotoxic activity of 5-Cl-7-I-8-HQ (clioquinol, CQ) copper complex (Cu(CQ)). 8-HQs alone cause a dose-dependent loss of viability of the human tumor HeLa and PC3 cells, but the coadministration of copper increases the ligands effects, with extensive cell death occurring in both cell lines. Cytotoxic doses of Cu(CQ) promote intracellular copper accumulation and massive endoplasmic reticulum vacuolization that precede a nonapoptotic (paraptotic) cell death. The cytotoxic effect of Cu(CQ) is reproduced in normal human endothelial cells (HUVEC) at concentrations double those effective in tumor cells, pointing to a potential therapeutic window for Cu(CQ). Finally, the results show that the paraptotic cell death induced by Cu(CQ) does not require nor involve caspases, giving an indication for the current clinical assessment of clioquinol as an antineoplastic agent.
Oncogene | 2013
Raúl V. Durán; Elaine D. MacKenzie; Houda Boulahbel; Christian Frezza; L Heiserich; Saverio Tardito; O Bussolati; Sonia Rocha; Michael N. Hall; Eyal Gottlieb
Hypoxia-inducible factor (HIF) prolyl hydroxylases (PHDs) are α-ketoglutarate (αKG)-dependent dioxygenases that function as cellular oxygen sensors. However, PHD activity also depends on factors other than oxygen, especially αKG, a key metabolic compound closely linked to amino-acid metabolism. We examined the connection between amino-acid availability and PHD activity. We found that amino-acid starvation leads to αKG depletion and to PHD inactivation but not to HIF stabilization. Furthermore, pharmacologic or genetic inhibition of PHDs induced autophagy and prevented mammalian target of rapamycin complex 1 (mTORC1) activation by amino acids in a HIF-independent manner. Therefore, PHDs sense not only oxygen but also respond to amino acids, constituting a broad intracellular nutrient-sensing network.
Histochemistry and Cell Biology | 2006
Saverio Tardito; Ovidio Bussolati; Francesca Gaccioli; Rita Gatti; S. Guizzardi; Jacopo Uggeri; Luciano Marchiò; Maurizio Lanfranchi; Renata Franchi-Gazzola
A0, a Cu(II) thioxotriazole complex, produces severe cytotoxic effects on HT1080 human fibrosarcoma cells with a potency comparable to that exhibited by cisplatin. A0 induced a characteristic series of changes, hallmarked by the formation of eosin- and Sudan Black-B-negative vacuoles. No evidence of nuclear fragmentation or caspase-3 activation was detected in cells treated with A0 which, rather, inhibited cisplatin-stimulated caspase-3 activity. Membrane functional integrity, assessed with calcein and propidium iodide, was spared until the late stages of the death process induced by the copper complex. Vacuoles were negative to the autophagy marker monodansylcadaverine and their formation was not blocked by 3-methyladenine, an inhibitor of autophagic processes. Negativity to the extracellular marker pyranine excluded vacuole derivation from the extracellular fluid. Ultrastructural analysis indicated that A0 caused the appearance of many electronlight cytoplasmic vesicles, possibly related to the endoplasmic reticulum, which progressively enlarge and coalesce to form large vacuolar structures that eventually fill the cytoplasm. It is concluded that A0 triggers a non-apoptotic, type 3B programmed cell death (Clarke in Anat Embryol (Berl) 181:195–213, 1990), characterized by an extensive cytoplasmic vacuolization. This peculiar cytotoxicity pattern may render the employment of A0 to be of particular interest in apoptosis-resistant cell models.
Nature Medicine | 2017
Elodie M. Kuntz; Pablo Baquero; Alison M. Michie; Karen Dunn; Saverio Tardito; Tessa L. Holyoake; G. Vignir Helgason; Eyal Gottlieb
Treatment of chronic myeloid leukemia (CML) with imatinib mesylate and other second- and/or third-generation c-Abl-specific tyrosine kinase inhibitors (TKIs) has substantially extended patient survival. However, TKIs primarily target differentiated cells and do not eliminate leukemic stem cells (LSCs). Therefore, targeting minimal residual disease to prevent acquired resistance and/or disease relapse requires identification of new LSC-selective target(s) that can be exploited therapeutically. Considering that malignant transformation involves cellular metabolic changes, which may in turn render the transformed cells susceptible to specific assaults in a selective manner, we searched for such vulnerabilities in CML LSCs. We performed metabolic analyses on both stem cell–enriched (CD34+ and CD34+CD38−) and differentiated (CD34−) cells derived from individuals with CML, and we compared the signature of these cells with that of their normal counterparts. Through combination of stable isotope–assisted metabolomics with functional assays, we demonstrate that primitive CML cells rely on upregulated oxidative metabolism for their survival. We also show that combination treatment with imatinib and tigecycline, an antibiotic that inhibits mitochondrial protein translation, selectively eradicates CML LSCs both in vitro and in a xenotransplantation model of human CML. Our findings provide a strong rationale for investigation of the use of TKIs in combination with tigecycline to treat patients with CML with minimal residual disease.