Sávia Caldeira de Araújo Lopes
Universidade Federal de Minas Gerais
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sávia Caldeira de Araújo Lopes.
Therapeutic Delivery | 2013
Diego dos Santos Ferreira; Sávia Caldeira de Araújo Lopes; Marina Santiago Franco; Mônica Cristina de Oliveira
In recent years, liposomes have been employed with growing success as pharmaceutical carriers for antineoplastic drugs. One specific strategy used to enhance in vivo liposome-mediated drug delivery is the improvement of intracytoplasmic delivery. In this context, pH-sensitive liposomes (pHSLip) have been designed to explore the endosomal acidification process, which may lead to a destabilization of the liposomes, followed by a release of their contents into the cell cytoplasm. This review considers the current status of pHSLip development and its applicability in cancer treatment, focusing on the mechanisms of pH sensitivity and liposomal composition of pHSLip. The final section will discuss the application of these formulations in both in vitro and in vivo studies of antitumor efficacy.
BioMed Research International | 2013
Sávia Caldeira de Araújo Lopes; Marcus Vinícius Melo Novais; C.S. Teixeira; Kinulpe Honorato-Sampaio; Marcio Tadeu Pereira; Lucas Antônio Miranda Ferreira; Fernão Castro Braga; Mônica Cristina de Oliveira
Cancer is one of the leading causes of death worldwide. Although several drugs are used clinically, some tumors either do not respond or are resistant to the existing pharmacotherapy, thus justifying the search for new drugs. Ursolic acid (UA) is a triterpene found in different plant species that has been shown to possess significant antitumor activity. However, UA presents a low solubility in aqueous medium, which presents a barrier to its biological applications. In this context, the use of liposomes presents a promising strategy to deliver UA and allow for its intravenous administration. In this work, long-circulating and pH-sensitive liposomes containing UA (SpHL-UA) were developed, and their chemical and physicochemical properties were evaluated. SpHL-UA presented adequate properties, including a mean diameter of 191.1 ± 6.4 nm, a zeta potential of 1.2 ± 1.4 mV, and a UA entrapment of 0.77 ± 0.01 mg/mL. Moreover, this formulation showed a good stability after having been stored for 2 months at 4°C. The viability studies on breast (MDA-MB-231) and prostate (LNCaP) cancer cell lines demonstrated that SpHL-UA treatment significantly inhibited cancer cell proliferation. Therefore, the results of the present work suggest the applicability of SpHL-UA as a new and promising anticancer formulation.
Archive | 2013
Sávia Caldeira de Araújo Lopes; Cristiane dos Santos Giuberti; TalitaGuieiro Ribeiro Rocha; Diego dos Santos Ferreira; Elaine AmaralLeite; Mônica Cristina de Oliveira
Nanotechnology and nanoscience present a highly positive prospective of bringing benefits to many research areas and applications. Nanosized vehicles have received considerable attention over the past 30 years as pharmaceutical carriers with a wide range of applications, including drug delivery vehicles, adjuvants in vaccinations, signal enhancers/carriers in medical diagnostics and analytical biochemistry, solubilizers for various materials, as well as their role as a support matrix for chemical ingredients and as penetration enhancers in cosmetic products. More recent developments have reported on the field of liposomal drugs, from the viewpoint of clinically approved products, with cancer therapy representing the main area of interest [1-3]. In this context, liposomes can be used to improve current cancer treatment regimens due to their capacity to increase the solubility of poorly water-soluble antitumor drugs. Moreover, these also act to decrease the mononuclear phagocyte system’s (MPS) uptake by using long-circulating liposomes which promote a passive directing toward the tumor region and can lead to an active directing toward the tumor site by connecting specific ligands to the liposome surface [4,5]. These strategies minimize drug degradation and inactivation upon administration, as well as increase the drug’s bioavailability and the fraction of drug delivered within the pathological area, thus improving efficacy and/or minimizing drug toxicity.
Langmuir | 2014
Sávia Caldeira de Araújo Lopes; Marcus Vinícius Melo Novais; Diego dos Santos Ferreira; Fernão Castro Braga; R. Magalhães-Paniago; Ângelo Malachias; Mônica Cristina de Oliveira
Ursolic acid (UA) is a triterpene found in different plant species that has been shown to possess significant antitumor activity. However, UA presents a low water solubility, which limits its biological applications. In this context, our research group has proposed the incorporation of UA in long-circulating and pH-sensitive liposomes (SpHL-UA).These liposomes, composed of dioleylphosphatidylethanolamine (DOPE), cholesteryl hemisuccinate (CHEMS), and distearoylphosphatidylethanolamine-polyethylene glycol2000 (DSPE-PEG2000), were shown to be very promising carriers for UA. Considering that the release of UA from SpHL-UA and its antitumor activity depend upon the occurrence of the lamellar to non-lamellar phase transition of DOPE, in the present work, the interactions of UA with the components of the liposomes were evaluated, aiming to clarify their role in the structural organization of DOPE. The study was carried out by differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) under low hydration conditions. DSC studies revealed that DOPE phase transition temperatures did not shift significantly upon UA addition. On the other hand, in SAXS studies, a different pattern of DOPE phase organization was observed in the presence of UA, with the occurrence of the cubic phase Im3m at 20 °C and the cubic phase Pn3m at 60 °C. These findings suggest that UA interacts with the lipids and changes their self-assembly. However, these interactions between the lipids and UA were unable to eliminate the lamellar to non-lamellar phase transition, which is essential for the cytoplasmic delivery of UA molecules from SpHL-UA.
International Journal of Nanomedicine | 2016
Diego dos Santos Ferreira; Samilla Dornelas Faria; Sávia Caldeira de Araújo Lopes; C.S. Teixeira; Angelo Malachias; R. Magalhães-Paniago; José Dias de Souza Filho; Bruno L. Oliveira; Alexander R. Guimaraes; Peter Caravan; Lucas Antônio Miranda Ferreira; Ricardo José Alves; Mônica Cristina de Oliveira
Background Despite recent advances in cancer therapy, the treatment of bone tumors remains a major challenge. A possible underlying hypothesis, limitation, and unmet need may be the inability of therapeutics to penetrate into dense bone mineral, which can lead to poor efficacy and high toxicity, due to drug uptake in healthy organs. The development of nanostructured formulations with high affinity for bone could be an interesting approach to overcome these challenges. Purpose To develop a liposomal formulation with high affinity for hydroxyapatite and the ability to release doxorubicin (DOX) in an acidic environment for future application as a tool for treatment of bone metastases. Materials and methods Liposomes were prepared by thin-film lipid hydration, followed by extrusion and the sulfate gradient-encapsulation method. Liposomes were characterized by average diameter, ζ-potential, encapsulation percentage, X-ray diffraction, and differential scanning calorimetry. Release studies in buffer (pH 7.4 or 5), plasma, and serum, as well as hydroxyapatite-affinity in vitro analysis were performed. Cytotoxicity was evaluated by MTT assay against the MDA-MB-231 cell line, and biodistribution was assessed in bone metastasis-bearing animals. Results Liposomes presented suitable diameter (~170 nm), DOX encapsulation (~2 mg/mL), controlled release, and good plasma and serum stability. The existence of interactions between DOX and the lipid bilayer was proved through differential scanning calorimetry and small-angle X-ray scattering. DOX release was faster when the pH was in the range of a tumor than at physiological pH. The bone-targeted formulation showed a strong affinity for hydroxyapatite. The encapsulation of DOX did not interfere in its intrinsic cytotoxicity against the MDA-MB-231 cell line. Biodistribution studies demonstrated high affinity of this formulation for tumors and reduction of uptake in the heart. Conclusion These results suggest that bone-targeted pH-sensitive liposomes containing DOX can be an interesting strategy for selectively delivering this drug into bone-tumor sites, increasing its activity, and reducing DOX-related toxicity.
Biomedicine & Pharmacotherapy | 2017
Caroline Mari Ramos Oda; Renata S. Fernandes; Sávia Caldeira de Araújo Lopes; Mônica Cristina de Oliveira; Valbert Nascimento Cardoso; D. M. dos Santos; Adriano M.C. Pimenta; Angelo Malachias; R. Paniago; Danyelle M. Townsend; Patrick M. Colletti; Domenico Rubello; Ricardo José Alves; André Luís Branco de Barros; Elaine Amaral Leite
The use of nanoparticles for diagnostic approaches leads to higher accumulation in the targeting tissue promoting a better signal-to-noise ratio and consequently, early tumor detection through scintigraphic techniques. Such approaches have inherent advantages, including the possibility of association with a variety of gamma-emitting radionuclides available, among them, Tecnethium-99m (99mTc). 99mTc is readily conjugated with nanoparticles using chelating agents, such as diethylenetriaminepentaacetic acid (DTPA). Leveraging this approach, we synthesized polymeric micelles (PM) consisting of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DSPE-mPEG2000) functionalized with DTPA for radiolabeling with 99mTc. Micelles made up of DSPE-mPEG2000 and DSPE-PEG2000-DTPA had a mean diameter of ∼10nm, as measured by DLS and SAXS techniques, and a zeta potential of -2.7±1.1mV. Radiolabeled micelles exhibited high radiochemical yields and stability. In vivo assays indicated long blood circulation time (456.3min). High uptake in liver, spleen and kidneys was observed in the biodistribution and imaging studies on healthy and tumor-bearing mice. In addition, a high tumor-to-muscle ratio was detected, which increased over time, showing accumulation of the PM in the tumor region. These findings indicate that this system is a promising platform for simultaneous delivery of therapeutic agents and diagnostic probes.
Colloids and Surfaces B: Biointerfaces | 2016
Liziane O.F. Monteiro; Sávia Caldeira de Araújo Lopes; André Luís Branco de Barros; R. Magalhães-Paniago; Ângelo Malachias; Mônica Cristina de Oliveira; Elaine Amaral Leite
Paclitaxel is a potent antimicrotubule chemotherapeutic agent widely used for clinical treatment of a variety of solid tumors. However, the low solubility of the drug in aqueous medium and the toxic effects of the commercially available formulation, Taxol(®), has hindered its clinical application. To overcome these paclitaxel-related disadvantages, several drug delivery approaches have been thoroughly investigated. In this context, our research group has developed long-circulating and pHsensitive liposomes containing paclitaxel composed of dioleylphosphatidylethanolamine, cholesterylhemisuccinate and distearoylphosphatidylethanolamine-polyethylene glycol2000, which have shown to be very promising carriers for this taxane. For the destabilization of pH-sensitive liposomal systems and the release of the encapsulated drug in the cytoplasm of tumor cells, the occurrence of a phase transition from a lamellar to a non-lamellar phase of dioleylphosphatidylethanolamine molecules is essential. Two techniques, differential scanning calorimetry and small angle X-ray scattering, were used to investigate the influence of the liposomal components and paclitaxel in the phase transition process of dioleylphosphatidylethanolamine molecules and to evaluate the pH-sensitivity of the formulation under low hydration conditions. The findings clearly evidence the phase transition of dioleylphosphatidylethanolamine molecules in the presence and absence of PTX indicating that the introduction of the drug in the system does not bring damage to the pH-sensitivity of the system, which resulting in liposome destabilization at low pH regions and encapsulated paclitaxel release preferentially in a desired target tissue.
Biomedicine & Pharmacotherapy | 2018
Liziane O.F. Monteiro; Renata S. Fernandes; Caroline Mari Ramos Oda; Sávia Caldeira de Araújo Lopes; Danyelle M. Townsend; Valbert Nascimento Cardoso; Mônica Cristina de Oliveira; Elaine Amaral Leite; Domenico Rubello; André Luís Branco de Barros
A range of antitumor agents for cancer treatment is available; however, they show low specificity, which often limit their use. Recently, we have reported the preparation of folate-coated long-circulating and pH-sensitive liposomes (SpHL-folate-PTX) loaded with paclitaxel (PTX), an effective drug for the treatment of solid tumors, including breast cancer. The purpose of this study was to prepare and characterize SpHL-PTX and SpHL-folate-PTX radiolabeled with technetium-99m (99mTc). Biodistribution studies and scintigraphic images were performed after intravenous administration of 99mTc-PTX, 99mTc-SpHL-PTX and 99mTc-SpHL-folate-PTX into healthy and tumor-bearing mice. High radiochemical purity (>98%) and in vitro stability (>90%) were achieved for both liposome formulations. The pharmacokinetic properties of 99mTc-SpHL-DTPA-PTX and 99mTc-SpHL-folate-DTPA-PTX decreased in a monophasic manner showing half-life of 400.1 and 541.8min, respectively. Scintigraphic images and biodistribution studies showed a significant uptake in liver, spleen and kidneys, demonstrating these routes as way for excretion. At 8h post-injection, the liposomal tumor uptake was higher than 99mTc-PTX. Interesting, 4h after administration, the liposome folate coated showed higher tumor-to-muscle ratio than 99mTc-SpHL-DTPA-PTX and 99mTc-PTX. In conclusion, the liposomal systems, showed high tumor uptake by scintigraphic images, especially the 99mTc-SpHL-folate-DTPA-PTX that showed a sustained and higher tumor-to-muscle ratio than non-functionalized liposome, which indicate its feasibility as a PTX delivery system to folate positive tumors.
Drug Delivery and Translational Research | 2018
Shirleide Santos Nunes; Renata S. Fernandes; Carolina Henriques Cavalcante; Isabela Costa César; Elaine Amaral Leite; Sávia Caldeira de Araújo Lopes; Alice Ferretti; Domenico Rubello; Danyelle M. Townsend; Mônica Cristina de Oliveira; Valbert Nascimento Cardoso; André Luís Branco de Barros
Liposomes are lipid vesicles widely used as nanocarriers in targeted drug delivery systems for therapeutic and/or diagnostic purposes. A strategy to prolong the blood circulation time of the liposomes includes the addition of a hydrophilic polymer polyethylene glycol (PEG) moiety onto the surface of the vesicle. Several studies claim that liposome PEGylation by a single chain length or a combination of PEG with different chain lengths may alter the liposomes’ pharmacokinetic properties. Therefore, the purpose of this study was to evaluate the influence of PEG on the biodistribution of pH-sensitive liposomes in a tumor-bearing animal model. Three liposomal formulations (PEGylated or not) were prepared and validated to have a similar mean diameter, monodisperse distribution, and neutral zeta potential. The pharmacokinetic properties of each liposome were evaluated in healthy animals, while the biodistribution and scintigraphic images were evaluated in tumor-bearing mice. High tumor-to-muscle ratios were not statistically different between the PEGylated and non-PEGylated liposomes. While PEGylation is a well-established strategy for increasing the blood circulation of nanostructures, in our study, the use of polymer coating did not result in a better in vivo profile. Further studies must be carried out to confirm the feasibility of the non-PEGylated pH-sensitive liposomes for tumor treatment.
Current Drug Delivery | 2018
Flavia De Marco Almeida; Carolina Nunes da Silva; Sávia Caldeira de Araújo Lopes; D. M. dos Santos; Fernanda S. Torres; Felipe Lima Cardoso; Patrícia Massara Martinelli; Elizabeth R. da Silva; Maria Elena de Lima; Lucas Antônio Ferreira Miranda; Mônica Cristina de Oliveira
BACKGROUND PnPP-19 is a 19-amino-acid synthetic peptide previously described as a novel drug for the treatment of erectile dysfunction. OBJECTIVE The aim of this work was to evaluate the physicochemical properties of cationic transfersomes containing PnPP-19 and the skin permeation of free PnPP-19 and PnPP-19-loaded transfersomes. METHODS Three different liposomal preparation methods were evaluated. Cationic transfersomes contained egg phosphatidyl choline: stearylamine (9:1 w/w) and Tween 20 (84.6:15.4 lipid:Tween, w/w). Lipid concentration varied from 20 to 40 mM. We evaluated the entrapment percentage, mean diameter, zeta potential and stability at 4 °C of the formulations. The skin permeation assays were performed with abdominal human skin using Franz diffusion cell with 3 cm2 diffusion area at 32 °C and a fluorescent derivative of the peptide, containing 5-TAMRA, bound to PnPP-19 C-terminal region, where an extra lysine was inserted. RESULTS Our results showed variable entrapment efficiencies, from 6% to 30%, depending on the preparation method and the lipid concentration used. The reverse phase evaporation method using a total lipid concentration equal to 40 mM led to the best entrapment percentage (30.2 + 4.5%). Free PnPP-19 was able to permeate skin at a rate of 10.8 ng/cm2/h. However, PnPP-19 was specifically hydrolyzed by skin proteases, generating a fragment of 15 amino acid residues. Encapsulated PnPP-19 permeated the skin at a rate of 19.8 ng/cm2/h. CONCLUSION The encapsulation of PnPP-19 in cationic transfersomes protected the peptide from degradation, favoring its topical administration.