Sávia Gavazza
Federal University of Pernambuco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sávia Gavazza.
Bioresource Technology | 2014
F.M. Amaral; Mario Takayuki Kato; Lourdinha Florencio; Sávia Gavazza
An upflow anaerobic sludge blanket (UASB)-submerged aerated biofilter (SAB) system was evaluated to remove color and chemical oxygen demand (COD) from real textile effluent. The system was operated for 335 days in three phases (P-1, P-2, P-3) with total hydraulic retention time varying from 21 h to 14 h. The results showed that high sulfate levels (>300 mg SO4(2-)/L) impaired the dye reduction. The best color removal efficiencies of 30% and 96% for the UASB and the reactor system, respectively, were obtained in P-1; the SAB higher efficiency was associated with adsorption. The best COD removal efficiency of 71% for the reactor system was obtained in P-2. Precipitation of some material composed mostly of sulfur (98%) and some metals occurred in the UASB. However, the precipitated sulfur was again oxidized in the SAB. The system also showed an effective toxicity reduction in tests (Daphnia magna) with the treated effluent.
Journal of Environmental Management | 2012
Alessandra C.O. Chagas-Spinelli; Mario Takayuki Kato; Edmilson Santos de Lima; Sávia Gavazza
The removal of polyaromatic hydrocarbons (PAH) in tropical clay soil contaminated with diesel oil was evaluated. Three bioremediation treatments were used: landfarming (LF), biostimulation (BS) and biostimulation with bioaugmentation (BSBA). The treatment removal efficiency for the total PAHs differed from the efficiencies for the removal of individual PAH compounds. In the case of total PAHs, the removal values obtained at the end of the 129-day experimental period were 87%, 89% and 87% for LF, BS and BSBA, respectively. Thus, the efficiency was not improved by the addition of nutrients and microorganisms. Typically, two distinct phases were observed. A higher removal rate occurred in the first 17 days (P-I) and a lower rate occurred in the last 112 days (P-II). In phase P-I, the zero-order kinetic parameter (μg PAH g(-1) soil d(-1)) values were similar (about 4.6) for all the three treatments. In P-II, values were also similar but much lower (about 0.14). P-I was characterized by a sharp pH decrease to less than 5.0 for the BS and BSBA treatments, while the pH remained near 6.5 for LF. Concerning the 16 individual priority PAH compounds, the results varied depending on the bioremediation treatment used and on the PAH species of interest. In general, compounds with fewer aromatic rings were better removed by BS or BSBA, while those with 4 or more rings were most effectively removed by LF. The biphasic removal behavior was observed only for some compounds. In the case of naphthalene, pyrene, chrysene, benzo[k]fluoranthene and benzo[a]pyrene, removal occurred mostly in the P-I phase. Therefore, the best degradation process for total or individual PAHs should be selected considering the target compounds and the local conditions, such as native microbiota and soil type.
Journal of Water and Health | 2014
Fellipe Henrique Borba Alves; Thorsten Köchling; Julio Luz; Sylvana Melo dos Santos; Sávia Gavazza
Harvesting rainwater is a common practice worldwide, particularly in areas with no access to a public water supply or insufficient groundwater reserves. More than two million people living in semiarid regions of Brazil consume rainwater stored in cisterns, and little information is available regarding the water quality. Despite the initial good quality of the rainwater, its harvest and storage can introduce contaminants that must be eliminated before consumption. To evaluate the influence of handling, cistern age and precipitation on the quality of harvested rainwater, we monitored seven cisterns in the semiarid Brazilian Northeast over 4 years. Microbial and physicochemical parameters were monitored once a month, and denaturant gradient gel electrophoresis (DGGE) was performed at the end of the monitoring period. Coliform bacteria were detected in 100% of samples, while Escherichia coli were observed in 73.8%. The alkalinity and conductivity were the highest for the recently built cisterns due to the dissolution of construction materials. The DGGE of the 16S r DNA did not reveal the presence of E. coli. Instead, DGGE bands sequencing indicated that species primarily affiliated with Alphaproteobacteria were present in all cisterns, indicating the presence of microbial ecosystems capable of purifying and stabilizing the stored rainwater.
Environmental Technology | 2017
Thorsten Köchling; Antônio Djalma Nunes Ferraz; Lourdinha Florencio; Mario Takayuki Kato; Sávia Gavazza
ABSTRACT Azo dyes, which are widely used in the textile industry, exhibit significant toxic characteristics for the environment and the human population. Sequential anaerobic–aerobic reactor systems are efficient for the degradation of dyes and the mineralization of intermediate compounds; however, little is known about the composition of the microbial communities responsible for dye degradation in these systems. 454-Pyrosequencing of the 16S rRNA gene was employed to assess the bacterial biodiversity and composition of a two-stage (anaerobic–aerobic) pilot-scale reactor that treats effluent from a denim factory. The anaerobic reactor was inoculated with anaerobic sludge from a domestic sewage treatment plant. Due to the selective composition of the textile wastewater, after 210 days of operation, the anaerobic reactor was dominated by the single genus Clostridium, affiliated with the Firmicutes phylum. The aerobic biofilter harbored a diverse bacterial community. The most abundant phylum in the aerobic biofilter was Proteobacteria, which was primarily represented by the Gamma, Delta and Epsilon classes followed by Firmicutes and other phyla. Several bacterial genera were identified that most likely played an essential role in azo dye degradation in the investigated system.
Environmental Monitoring and Assessment | 2017
Simone Machado Santos; Maisa Mendonça Silva; Renata Maciel de Melo; Sávia Gavazza; Lourdinha Florencio; Mario Takayuki Kato
The decision-making process involved in municipal solid waste management (MSWM) must consider more than just financial aspects, which makes it a difficult task in developing countries. The Recife Metropolitan Region (RMR) in the Northeast of Brazil faces a MSWM problem that has been ongoing since the 1970s, with no common solution. In order to direct short-term solutions, three MSWM alternatives were outlined for the RMR, considering the current and future situations, the time and cost involved and social/environmental criteria. A multi-criteria approach, based on the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE), was proposed to rank these alternatives. The alternative that included two private landfill sites and seven transfer, sorting and composting stations was confirmed as the most suitable and stable option for short-term MSWM, considering the two scenarios for the criteria weights. Sensitivity analysis was also performed to support the robustness of the results. The implementation of separate collections would minimize the amount of waste buried, while maximizing the useful life of landfill sites and increasing the timeframe of the alternative. Overall, the multi-criteria analysis was helpful and accurate during the alternative selection process, considering the similarities and restrictions of each option, which can lead to difficulties during the decision-making process.
Water Science and Technology | 2015
Mitsue M. Nakazawa; W. R. S. Silva Júnior; Mario Takayuki Kato; Sávia Gavazza; Lourdinha Florencio
In this study, we evaluated the use of an up-flow anaerobic sludge blanket (UASB) reactor to treat crude glycerol obtained from cottonseed biodiesel production. The laboratory-scale UASB reactor (7.0 L) was operated at ambient temperature of 26.5°C with chemical oxygen demand (COD) concentrations between 0.5 and 8.0 g/L. The volatile fatty acid contents, pH, inorganic salt contents and biogas production were monitored during a 280-day experimental period. Molecular biology techniques were used to assess the microbial diversity in the bioreactor. The reactor achieved COD removal efficiencies of up to 92% except during one phase when the efficiency decreased to 81%. Biogas production remained stable throughout the experimental period, when the fraction converted to methane reached values as high as 68%. The profile of the denaturing gradient gel electrophoresis (DGGE) bands suggested slight changes in the microbial community during reactor operation. The overall results indicated that the crude glycerol from biodiesel production can serve as a suitable substrate for anaerobic degradation with a stable reactor performance and biogas production as long as the applied organic loads are up to 8.06 kg COD/m3·d.
Brazilian Journal of Biology | 2016
E. A. Pastich; Sávia Gavazza; M. C. C. Casé; Lourdinha Florencio; Mario Takayuki Kato
In northeastern Brazil, stabilization ponds are very suitable for wastewater treatment because of the relative great land availability and environmental conditions (e.g., high temperature) favorable for microorganism optimal development. However, blooms of potentially toxic cyanobacteria may affect the use of these treatment ponds due to resulting effluent poor quality. The objective of this study was to evaluate the dynamics of phytoplankton communities and the occurrence of cyanobacteria in a maturation pond located immediately after a series of two ponds. Temperature, dissolved oxygen, pH, BOD, N, and P were measured during a period of four months when samples were collected from the surface and the bottom of 7 sampling points distributed inside the pond. The phytoplankton of collected samples was also identified and classified using a conventional optical microscopy. Analysis of variance and Tukey test were used to evaluate the results. The three phytoplankton divisions found (Cyanophyta, Chlorophyta, and Euglenophyta) did not change considerably through surface and bottom. However, they changed greatly over the sampled months; great dominance of Cyanophyta was found at April and October, while Chlorophyta dominated the lagoon in September. Low superficial organic loads (between 78 and 109 kg BOD.ha-1.d-1) and N:P ≤ 10 were the determinant factors that favored the predominance of Cyanophyta. The presence of two potentially toxic species of Cyanophyta, Oscillatoria sp. and Microcystis aeruginosa, indicates that caution is required when considering the final destination of treated effluent and suggests a need to assess the risks and benefits associated with the use of the treatment technology.
Engenharia Sanitaria E Ambiental | 2015
Robson José Silva; Sávia Gavazza; Lourdinha Florencio; Clístenes Williams Araújo do Nascimento; Mario Takayuki Kato
The cultivation of Eucalyptus urograndis seedlings irrigated with domestic sewage effluent of a treatment plant with anaerobic reactor and polishing pond was evaluated. Seedling pots were irrigated based on the soil pot capacity (PC) in six treatments (T) with four repetitions each. The pots in T1, T2, T3 and T4 were irrigated with slide heights at 100, 80, 60 and 40% of the PC index, respectively; in T5 and T6, irrigation was only with water and slide heights at 80% of PC. Only T5 received additional nutrients (NPK). Along the experiment (3 months), the treatment plant showed good removal efficiencies of biochemical oxygen demand (90%), chemical oxygen demand (87%) and helminth eggs (100%); therefore, with adequate effluent quality for tree irrigation. T2 and T3 showed the best results in terms of plant development parameters, like height, stalk diameter, cup diameter, number of leaves and dry matter; comparatively, T2 showed the highest nitrogen accumulation in the leaves and stalks. The results show that cultivation of eucalyptus seedlings irrigated with treated sewage, taking advantage of the nutrients and with adequate slide heights (between 80 and 60% of PC index), is agronomically viable.
Journal of Water and Health | 2018
José Roberto Santo de Carvalho; Julio Luz; Sylvana Melo dos Santos; Sávia Gavazza
We evaluate the behavior of a device designed to automatically divert and store the first flush of harvested rainwater in cisterns. The first phase (PI) was conducted with artificial precipitation in an experimental installation seeking to identify how many millimeters of rainwater should be diverted to preserve the rainwater quality. In the second phase (PII), we designed a PVC-pipe device to store the first millimeter of rainwater, and tested it in field (a rural area in Brazil) during two real rainfall events. In the third phase (PIII), the device and a hand pump were assayed for two years using eight cisterns in a rural area where people drink the rainwater. PI results indicated that the most significant pollution of the rainwater is flushed with the first millimeter of rain, and diversion promoted the removal of 98% and 100% of the total coliforms and Escherichia coli, respectively. The bacteriological behavior was maintained in the subsequent phases. The device was able to preserve the quality of the rainwater most of the time, satisfying drinking requirements for the parameters of turbidity and color. The satisfactory performance of the device was confirmed in the field, behaving as a sanitary barrier for rainwater quality protection.
Engenharia Sanitaria E Ambiental | 2018
Vinicius Couto Salgado; Edecio José de Souza Filho; Sávia Gavazza; Lourdinha Florencio; Mario Takayuki Kato
The aim of this paper was to assess the agronomic viability of using anaerobically treated domestic sewage in cultivation of Crimson Sweet watermelon. In a field experiment conducted in the semi-arid region of Pernambuco state, Brazil, four treatments (T) were used to assess the effects of irrigation using dripping system on fruits and soil. Four heights of 50% (T1), 75% (T2), 100% (T3) and 125% (T4), based on the calculated evapotranspiration and irrigation needs, were applied. The treated effluent characteristics indicated compliance with the recommendations for agricultural application, but the concentration of suspended solids (114 mg.L) demanded frequent cleansing of the dripper blockages. We observed an increase in the cation exchange capacity and a decrease of the soil pH in all the treatments. The best results were obtained with the treatment T4 (height of 125%), which showed watermelons of bigger size (20.78 cm), as well as the highest productivity (61.1 t.ha) and fruit weight (7.12 kg.un). These values are higher than those of the country and Pernambuco state, demonstrating the agronomic feasibility of reuse under the studied conditions.