Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Savio J. A. Moniz is active.

Publication


Featured researches published by Savio J. A. Moniz.


Energy and Environmental Science | 2015

Visible-light driven heterojunction photocatalysts for water splitting – a critical review

Savio J. A. Moniz; Stephen A. Shevlin; David James Martin; Zhengxiao Guo; Junwang Tang

Solar driven catalysis on semiconductors to produce clean chemical fuels, such as hydrogen, is widely considered as a promising route to mitigate environmental issues caused by the combustion of fossil fuels and to meet increasing worldwide demands for energy. The major limiting factors affecting the efficiency of solar fuel synthesis include; (i) light absorption, (ii) charge separation and transport and (iii) surface chemical reaction; therefore substantial efforts have been put into solving these problems. In particular, the loading of co-catalysts or secondary semiconductors that can act as either electron or hole acceptors for improved charge separation is a promising strategy, leading to the adaptation of a junction architecture. Research related to semiconductor junction photocatalysts has developed very rapidly and there are a few comprehensive reviews in which the strategy is discussed (A. Kudo and Y. Miseki, Chemical Society Reviews, 2009, 38, 253–278, K. Li, D. Martin, and J. Tang, Chinese Journal of Catalysis, 2011, 32, 879–890, R. Marschall, Advanced Functional Materials, 2014, 24, 2421–2440). This critical review seeks to give an overview of the concept of heterojunction construction and more importantly, the current state-of-the art for the efficient, visible-light driven junction water splitting photo(electro)catalysts reported over the past ten years. For water splitting, these include BiVO4, Fe2O3, Cu2O and C3N4, which have attracted increasing attention. Experimental observations of the proposed charge transfer mechanism across the semiconductor/semiconductor/metal junctions and the resultant activity enhancement are discussed. In parallel, recent successes in the theoretical modelling of semiconductor electronic structures at interfaces and how these explain the functionality of the junction structures is highlighted.


Journal of the American Chemical Society | 2014

Visible Light-Driven Pure Water Splitting by a Nature-Inspired Organic Semiconductor-Based System

David James Martin; Philip James Thomas Reardon; Savio J. A. Moniz; Junwang Tang

For the first time, it is demonstrated that the robust organic semiconductor g-C3N4 can be integrated into a nature-inspired water splitting system, analogous to PSII and PSI in natural photosynthesis. Two parallel systems have been developed for overall water splitting under visible light involving graphitic carbon nitride with two different metal oxides, BiVO4 and WO3. Consequently, both hydrogen and oxygen can be evolved in an ideal ratio of 2:1, and evolution rates in both systems have been found to be dependent on pH, redox mediator concentration, and mass ratio between the two photocatalysts, leading to a stable and reproducible H2 and O2 evolution rate at 36 and 18 μmol h(-1) g(-1) from water over 14 h. Our findings demonstrate g-C3N4 can serve as a multifunctional robust photocatalyst, which could also be used in other systems such as PEC cells or coupled solar cell systems.


Chemistry: A European Journal | 2014

Fe2O3–TiO2 Nanocomposites for Enhanced Charge Separation and Photocatalytic Activity

Savio J. A. Moniz; Stephen A. Shevlin; Xiaoqiang An; Zhengxiao Guo; Junwang Tang

Photocatalysis provides a cost effective method for both renewable energy synthesis and environmental purification. Photocatalytic activity is dominated by the material design strategy and synthesis methods. Here, for the first time, we report very mild and effective photo-deposition procedures for the synthesis of novel Fe2 O3 -TiO2 nanocomposites. Their photocatalytic activities have been found to be dramatically enhanced for both contaminant decomposition and photoelectrochemical water splitting. When used to decompose a model contaminant herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), monitored by both UV/Vis and total organic carbon (TOC) analysis, 10% Fe-TiO2 -H2 O displayed a remarkable enhancement of more than 200 % in the kinetics of complete mineralisation in comparison to the commercial material P25 TiO2 photocatalyst. Furthermore, the photocurrent is nearly double that of P25. The mechanism for this improvement in activity was determined using density functional theory (DFT) and photoluminescence. These approaches ultimately reveal that the photoelectron transfer is from TiO2 to Fe2 O3 . This favours O2 reduction which is the rate-determining step in photocatalytic environmental purification. This in situ charge separation also allows for facile migration of holes from the valence band of TiO2 to the surface for the expected oxidation reactions, leading to higher photocurrent and better photocatalytic activity.


Chemistry: A European Journal | 2014

Earth-Abundant Oxygen Evolution Catalysts Coupled onto ZnO Nanowire Arrays for Efficient Photoelectrochemical Water Cleavage

Chaoran Jiang; Savio J. A. Moniz; Majeda Khraisheh; Junwang Tang

ZnO has long been considered as a model UV-driven photoanode for photoelectrochemical water splitting, but its performance has been limited by fast charge-carrier recombination, extremely poor stability in aqueous solution, and slow kinetics of water oxidation. These issues were addressed by applying a strategy of optimization and passivation of hydrothermally grown 1D ZnO nanowire arrays. The length and diameter of bare ZnO nanowires were optimized by varying the growth time and precursor concentration to achieve optimal photoelectrochemical performance. The addition of earth-abundant cobalt phosphate (Co-Pi) and nickel borate (Ni-B) oxygen evolution catalysts onto ZnO nanowires resulted in substantial cathodic shifts in onset potential to as low as about 0.3 V versus the reversible hydrogen electrode (RHE) for Ni-B/ZnO, for which a maximum photocurrent density of 1.1 mA cm−2 at 0.9 V (vs. RHE) with applied bias photon-to-current efficiency of 0.4 % and an unprecedented near-unity incident photon-to-current efficiency at 370 nm. In addition the potential required for saturated photocurrent was dramatically reduced from 1.6 to 0.9 V versus RHE. Furthermore, the stability of these ZnO nanowires was significantly enhanced by using Ni-B compared to Co-Pi due to its superior chemical robustness, and it thus has additional functionality as a stable protecting layer on the ZnO surface. These remarkable enhancements in both photocatalytic activity and stability directly address the current severe limitations in the use of ZnO-based photoelectrodes for water-splitting applications, and can be applied to other photoanodes for efficient solar-driven fuel synthesis.


Journal of Materials Chemistry | 2010

MOCVD of crystalline Bi2O3 thin films using a single-source bismuth alkoxide precursor and their use in photodegradation of water

Savio J. A. Moniz; Christopher S. Blackman; Claire J. Carmalt; Geoffrey Hyett

Bismuth(III) tert-butoxide [Bi(OtBu)3] was utilised as a single-source precursor to controllably deposit thin films of different phases of bismuth oxide (Bi2O3) on glass substrates via low-pressure chemical vapour deposition (LPCVD). Band gaps for the different phases have been measured (Eg = 2.3–3.0 eV) and the films displayed excellent photodegradation of water under near-UV irradiation.


Journal of Materials Chemistry | 2014

A simple, low-cost CVD route to thin films of BiFeO3 for efficient water photo-oxidation

Savio J. A. Moniz; Raul Quesada-Cabrera; Christopher S. Blackman; Junwang Tang; Paul Southern; Paul M. Weaver; Claire J. Carmalt

A novel method for preparation of BiFeO3 films via a simple solution-based CVD method is reported using for the first time a single-source heterobimetallic precursor [CpFe(CO)2BiCl2]. BiFeO3 films display ferroelectric and ferromagnetic ordering at room temperature and possess direct band-gaps between 2.0 and 2.2 eV. Photocatalytic testing for water oxidation revealed high activities under UVA (365 nm) and simulated solar irradiation, superior to that exhibited by a commercial standard (Pilkington Activ® TiO2 film) resulting in an apparent quantum yield of ∼24%.


Energy and Environmental Science | 2017

Linker-controlled polymeric photocatalyst for highly efficient hydrogen evolution from water

Yiou Wang; Mustafa K. Bayazit; Savio J. A. Moniz; Qiushi Ruan; Chi Ching Lau; Natalia Martsinovich; Junwang Tang

Polymeric photocatalysts have been identified as promising materials for H2 production from water due to their comparative low cost and facile modification of the electronic structure. However, the majority only respond to a limited wavelength region (λ 420 nm), with an apparent quantum yield (AQY) of 10.3% at 420 nm and 2.1% at 500 nm, measured under ambient conditions, which is closer to the real environment (instead of vacuum conditions). The strategy used here thus paves a new avenue to dramatically tune both the light absorption and charge separation to increase the activity of polymeric photocatalysts.


Chemcatchem | 2015

Charge Transfer and Photocatalytic Activity in CuO/TiO2 Nanoparticle Heterojunctions Synthesised through a Rapid, One‐Pot, Microwave Solvothermal Route

Savio J. A. Moniz; Junwang Tang

Rapid charge carrier recombination is a major limiting factor over efficiency in many semiconductor photocatalysts. To address this, copper(II) oxide/titanium dioxide (CuO/TiO2) heterojunctions were synthesised through a novel, rapid solvothermal microwave procedure using a low‐cost copper precursor and commercial P25 TiO2, taking as little as five minutes to synthesise well‐defined CuO nanoparticles onto the host TiO2, achieving an intimate contact. The resultant composites encompass pure CuO particles of approximately 6–7 nm diameter, confirmed by means of high resolution transmission electron microscopy and X‐ray photoelectron spectroscopy analysis. Photoelectrochemical water splitting was enhanced by nearly 2 times using the junction, whilst ≈1.6 times enhancement in the photocatalytic mineralisation of a model organic pollutant 2,4‐dichlorophenoxyacetic acid (2,4‐D) was observed. Furthermore, we studied the initial decomposition mechanism of 2,4‐D by means of GC‐MS analysis. The increase in catalytic activity, investigated by impedance analysis (Mott–Schottky plots) and photoluminescence spectra, is attributed to photoelectron transfer from the more negative conduction band (CB) of TiO2 to CuO, leaving the photohole on TiO2 to take part in oxidation reactions. This strategy allows for in situ charge separation which facilitates superior photocatalytic activity for both pollutant degradation and water splitting.


Journal of Materials Chemistry | 2013

Nanostructured tungsten oxide gas sensors prepared by electric field assisted aerosol assisted chemical vapour deposition

Anupriya J. T. Naik; Michael E. A. Warwick; Savio J. A. Moniz; Christopher S. Blackman; Ivan P. Parkin; Russell Binions

Nanostructured thin films of tungsten trioxide were deposited on to gas sensor substrates at 600 °C from the aerosol assisted chemical vapour deposition reaction of tungsten hexaphenoxide solutions in toluene under the influence of electric fields. The electric fields were generated by applying a potential difference between the inter-digitated electrodes of the gas sensor substrates during the deposition. The deposited films were characterised using scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The application of an electric field, encouraged formation of enhanced nanostructured morphologies, with an increase in needle length and reduction in needle diameter being observed. The film gas sensor properties were also examined; it was found that the highest response of 110 to 800 ppb NO2 was given by a sensor grown under the influence of a 1.8 × 104 V m−1 electric field and operated at 250 °C, a 2.5 times enhancement compared to a sensor grown in the absence of an electric field under its optimal operating conditions.


New Journal of Chemistry | 2015

Photocatalytic mineralisation of herbicide 2,4,5-trichlorophenoxyacetic acid: enhanced performance by triple junction Cu-TiO2-Cu2O and the underlying reaction mechanism

Xiaoqiang An; Huijuan Liu; Jiuhui Qu; Savio J. A. Moniz; Junwang Tang

A mild and facile photodeposition method was used to fabricate novel Cu–TiO2–Cu2O composite photocatalysts. Due to the in situ rectifying charge carrier separation and enhanced conductivity, the composites present superior photocatalytic activity, leading to more than 90% mineralisation of the toxic 2,4,5-trichlorophenoxyacetic acid herbicide. This result was confirmed by both TOC and UV-vis absorption measurements. The effect of active radicals on the photodegradation of the herbicide was further investigated in order to clarify the underlying mechanism, based on which a hole-dominated photooxidation mechanism was proposed. These results not only offer a green and economical method for constructing triple junction photocatalyst materials, but also shed new insight on the rational design of a low cost and high-efficiency photocatalyst for environmental remediation.

Collaboration


Dive into the Savio J. A. Moniz's collaboration.

Top Co-Authors

Avatar

Junwang Tang

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Pugh

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Ivan P. Parkin

University College London

View shared research outputs
Top Co-Authors

Avatar

Chaoran Jiang

University College London

View shared research outputs
Top Co-Authors

Avatar

Chi Ching Lau

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiushi Ruan

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge