Sayed Haidar Abbas Raza
Northwest A&F University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sayed Haidar Abbas Raza.
Molecular and Cellular Probes | 2016
Xing Ping Wang; Zhuo Ma Luoreng; Linsen Zan; Sayed Haidar Abbas Raza; Feng Li; Shuan Liu
This study reports a significant up-regulation of bta-miR-146a and bta-miR-146b expression levels in bovine mammary tissues infected with subclinical, clinical and experimental mastitis. Potential target genes are involved in multiple immunological pathways. These results suggest a regulatory function of both miRNAs for the bovine inflammatory response in mammary tissue.
Scientific Reports | 2017
Dawei Wei; Linsheng Gui; Sayed Haidar Abbas Raza; Song Zhang; Rajwali Khan; Li Wang; Hongfang Guo; Linsen Zan
The SIX1 homeobox gene belongs to the six homeodomain family and is widely thought to play a principal role in mediating of skeletal muscle development. In the present study, we determined that the bovine SIX1 gene was highly expressed in the longissimus thoracis and physiologically immature individuals. DNA sequencing of 428 individual Qinchuan cattle identified nine single nucleotide polymorphisms (SNPs) in the promoter region of the SIX1 gene. Using a series of 5′ deletion promoter plasmid luciferase reporter assays and 5′-rapid amplification of cDNA end analysis (RACE), two of these SNPs were found to be located in the proximal minimal promoter region −216/−28 relative to the transcriptional start site (TSS). Correlation analysis showed the combined haplotypes H1-H2 (-GG-GA-) was significantly greater in the body measurement traits (BMTs) than the others, which was consistent with the results showing that the transcriptional activity of Hap2 was higher than the others in Qinchuan cattle myoblast cells. Furthermore, the electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation assay (ChIP) demonstrated that NRF1 and ZSCAN10 binding occurred in the promoter region of diplotypes H1-H2 to regulate SIX1 transcriptional activity. This information may be useful for molecular marker-assisted selection (MAS) in cattle breeding.
Molecular and Cellular Probes | 2017
Linsheng Gui; Jieyun Hong; Sayed Haidar Abbas Raza; Linsen Zan
Sirtuin 3 (SIRT3) is a mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase. It has crucial roles in regulating the respiratory chain, in adenosine triphosphate (ATP) production, and in both the citric acid and urea cycles. The aim of this study was to investigate whether SIRT3 could be used as a candidate gene in the breeding of cattle. Expression analysis by quantitative real-time polymerase chain reactions (qPCR) indicated that expression levels of SIRT3 were highest in the kidney, rumen, liver, omasum and muscle. Using sequencing technology on a total of 913 cattle representing three indigenous Chinese beef cattle breeds, three single nucleotide polymorphisms (SNPs) were identified in the promoter region of SIRT3, and five haplotypes representing five potential transcription factor compositions of polymorphic potential cis-acting elements. Association analysis indicated that the Hap3/8 diplotype performed better than other combinations in intramuscular fat content. In addition, the promoter activity with Hap1 haplotype was higher than the Hap8 haplotype, consistent with the association analysis. The results indicate that the polymorphisms in transcription factor binding sites of SIRT3 promoter may affect the transcriptional activity of SIRT3, and thus alter intramuscular fat content in beef cattle.
Gene | 2018
Sayed Haidar Abbas Raza; Linsheng Gui; Rajwali Khan; Schreurs Nm; Wang Xiaoyu; Sen Wu; Chugang Mei; Li Wang; Xueyao Ma; Dawei Wei; Hongfang Guo; Song Zhang; Xingping Wang; Hubdar Ali Kaleri; Linsen Zan
Fatty acid synthase (FASN) is an enzyme involved with fat deposition and fatty acid composition in cattle. This study was conducted to detect single nucleotide polymorphisms (SNPs) of the FASN gene and explore their relationships with ultrasound carcass traits in order to assess the potential use of the FASN gene for the breeding selection of Qinchuan cattle for desirable carcass traits. The frequencies of SNP g.12740C>T, g.13192T>C and g.13232C>T were identified in 525 individual Qinchuan cattle which were also assessed for backfat depth, eye muscle area and intramuscular fat by ultrasound. According to the PIC values, g.13192T>C possessed an intermediate polymorphism (0.25<PIC<0.5). The SNPs of g.13232C>T, g.12740C>T possessed low polymorphism (PIC<0.25). Chi-square tests showed that g.13192T>C were in Hardy-Weinberg disequilibrium (c2<c0.052). Two SNPs were found to be associated with variation in ultrasound carcass traits. The H2H2 diplotypes had a greater back fat depth than H1H1, H1H4 and H1H2 (P<0.01). The TT genotype at g.13192T>C was associated with a greater eye muscle area and the TT genotype at g.13232C>T was associated with greater intramuscular fat. When these genotypes were combined there was no difference in eye muscle area and intramuscular fat between the diplotypes. The H2H2 diplotype was associated with carcass traits that are likely to provide economic advantage in Qinchuan cattle. Variations in the FASN genes and their corresponding genotypes may be considered as molecular markers for economic traits in cattle breeding.
Molecular and Cellular Probes | 2017
Ning Song; Xingping Wang; Linsheng Gui; Sayed Haidar Abbas Raza; Zhuo-Ma Luoreng; Linsen Zan
In human, microRNA-214 (miR-214) plays crucial roles in mechanisms of immunity. However, the potential importance of miR-214 in immune mechanisms in dairy cows has not been investigated. In this study, we assessed potential immunity-related functions of miR-214 in human 293A cells and in bovine mammary epithelial cells (BMECs). We found that NFATc3 and TRAF3 could be targeted by miR-214 in both 293A cells and BMECs. We also found that miR-214 indirectly inhibited the expression of MAP3K14, TBK1 and inflammatory cytokines IL-6 and IL-1β. Taken together, our data revealed miR-214 regulated immunity-related genes by targeting NFATc3 and TRAF3, which provides insight into the molecular basis of immunity.
Tropical Animal Health and Production | 2018
Rajwali Khan; Hongfang Guo; Sayed Haidar Abbas Raza; Abdur Rahman; Muhammad Ayaz; Zan Linsen
Pre-slaughter and slaughter stressors are considered major concerns in animal welfare. Halal slaughtering method is considered one of the slaughtering stressors in livestock. This method seems to cause fear followed by stress in animals mainly due to inhuman handling. In this review, empathy and animal welfare are discussed in light of Islamic sharia and has further linked with animal’s physiology and behavioral responses during slaughtering. Islam as a religion forbids slaughtering an animal in front of another animal as through optic, olfactory, and cochlear senses animals can perceive the stress state of conspecifics. This suggests and strengthens the hypothesis that animals being slaughtered in front of each other may produce stress in them. This argument further leads to a claim that animals can experience empathy of each other through olfaction of semiochemicals (stress pheromones) emitted from animals slaughtered in the stressful condition that can be detected by other animals in abattoirs. Hence, research is needed to find out these specific stress pheromones and legislation needs to be adopted in slaughterhouses to isolate the areas of butchery from slaughtering lines to ensure proper guidelines of Halal slaughtering in slaughterhouses.
Genomics | 2018
Chugang Mei; Hongcheng Wang; Qijun Liao; Rajwali Khan; Sayed Haidar Abbas Raza; Chunping Zhao; Hongbao Wang; Gong Cheng; Wanqiang Tian; Yaokun Li; Linsen Zan
A new strain of Qinchuan cattle (QNS) has been obtained after more than forty years of selective breeding, and it shows good performance and production traits. To characterize the genetic changes that have resulted from breeding, we sequenced 10 QNS and 10 of the original breed Qinchuan cattle (QCC) for the first time, with average of 12.5-fold depth. A total of 31,242,284 and 29,612,517 SNPs were identified in the QCC and QNS genomes, 47.81% and 44.36% of which were found to be novel, respectively. Furthermore, population structure analysis revealed the selection that these cattle had experienced. Then, 332 and 571 potential selected genes were obtained, associated with enhanced immunity and acclimatization in QCC (CD5, SMARCA2, CATHL2, etc.) and production or meat quality traits in QNS (PLCD3, MB, PPARGC1A, etc.). These results revealed the efforts of selective breeding for Chinese Qinchuan cattle, and will be helpful for future cattle breeding.
Gene | 2018
Dawei Wei; Sayed Haidar Abbas Raza; Jiupan Zhang; Linsheng Gui; Siddiq Ur Rahman; Rajwali Khan; Seyed Mahdi Hosseini; Hubdar Ali Kaleri; Linsen Zan
The sine oculis homeobox homolog 4 (SIX4) gene belongs to the SIX gene family, which plays a critical role in muscle regeneration and early stages of ontogeny. This study aimed to detect promoter variations of bovine SIX4 genes in Qinchuan cattle, and to evaluate the effect of transcription regulations and body measurement traits. Quantitative real-time PCR (qPCR) results showed that the mRNA expression levels of SIX4 gene were found significantly highest in longissimus thoracis tissue and individual before attaining the stage of physiological maturity. Using sequencing technology on a total of 428 Qinchuan cattle, seven single nucleotide polymorphisms (SNPs) were identified in the promoter region of SIX4, and seven haplotypes representing 18 potential transcription factor compositions of polymorphic potential cis-acting elements. Association analysis indicated that the H3-H3 diplotype performed greater withers height, chest depth, chest circumference, back fat thickness and ultrasound loin muscle area (P < 0.05) than H5-H6, which were consistent with the promoter activity of Hap3 haplotype was higher than the Hap5 and Hap6 haplotype in vitro. These potential transcription factor information and combined genotypes H3-H3 of the SIX4 gene can be used as a molecular marker for selection of economic traits in Qinchuan cattle.
Gene | 2018
Hongfang Guo; Sayed Haidar Abbas Raza; Schreurs Nm; Rajwali Khan; Dawei Wei; Li Wang; Song Zhang; Le Zhang; Sen Wu; Irfan Ullah; Seyed Mahdi Hosseini; Linsen Zan
Krüppel-like factor 3 (KLF3), a member of the Krüppel-like factor (KLF) family, plays an important role in adipogenesis and lipid metabolism. The aim of this study was to investigate whether KLF3 could be used as a candidate gene in the breeding of cattle. The expression pattern of bovine KLF3 gene revealed that it was highly expressed in abdominal fat and perirenal fat. Using DNA sequencing, three single nucleotide polymorphisms (SNPs) within the promoter regions of KLF3 gene were identified in 448 Qinchuan cattle, which are located in the recognition sequences of 11 transcription factors and the four haplotypes representing four potential different compositions of polymorphic potential cis-acting elements. Association analysis results indicated that individuals with the Hap7/7 diplotype showed higher (P < 0.05) intramuscular fat content (IFC) than those with H7/8. In addition, the H7 haplotype had much higher (P < 0.05) transcriptional activity than the H8 haplotype, consistent with the association analysis. We speculated that polymorphisms in transcription factor binding sites of the KLF3 promoter region affected transcriptional activity of KLF3, which subsequently influence intramuscular fat content in Qinchuan cattle and KLF3 gene could be used as molecular markers for fat deposition traits using early marker-assisted selection (MAS) of Qinchuan cattle breeding in the future.
Gene | 2018
Hongfang Guo; Rajwali Khan; Sayed Haidar Abbas Raza; Yue Ning; Dawei Wei; Sen Wu; Seyed Mahdi Hosseini; Irfan Ullah; Matthew D. Garcia; Linsen Zan