Sayer Al-Harbi
Cleveland Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sayer Al-Harbi.
Methods of Molecular Biology | 2015
Gaurav S. Choudhary; Sayer Al-Harbi; Alexandru Almasan
Apoptosis can be measured by number of methods by taking advantage of the morphological, biochemical, and molecular changes undergoing in a cell during this process. The best recognized biochemical hallmark of both early and late stages of apoptosis is the activation of cysteine proteases (caspases). Detection of active caspase-3 in cells and tissues is an important method for apoptosis induced by a wide variety of apoptotic signals. Most common assays for examining caspase-3 activation include immunostaining, immunoblotting for active caspase-3, colorimetric assays using fluorochrome substrates, as well as employing the fluorescein-labeled CaspaTag pan-caspase in situ detection kit.
Cell Death and Disease | 2015
Gaurav S. Choudhary; Sayer Al-Harbi; Suparna Mazumder; Brian T. Hill; Mitchell R. Smith; Juraj Bodo; Eric D. Hsi; Alexandru Almasan
Overexpression of anti-apoptotic BCL-2 family members is a hallmark of many lymphoid malignancies, including chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL) that can be targeted with small molecule inhibitors. ABT-199 is a rationally designed BCL-2 homology (BH)-3 mimetic that specifically binds to BCL-2, but not to MCL-1 and BCL-xL. Although the thrombocytopenia that occurs with navitoclax treatment has not been a problem with ABT-199, clinical trials in CLL could benefit by lowering the ABT-199 concentration through targeting other survival pathways. In this study, we investigated the mechanisms of resistance that develops to ABT-199 therapy by generating ABT-199-resistant (ABT199-R) cell lines via chronic exposure of NHL cell lines to ABT-199. Acquired resistance resulted in substantial AKT activation and upregulation of MCL-1 and BCL-xL levels that sequestered BIM. ABT199-R cells exhibited increased MCL-1 stability and failed to activate BAX in response to ABT-199. The ABT-199 acquired and inherent resistant cells were sensitized to treatment with ABT-199 by inhibitors of the PI3K, AKT, and mTOR pathways, NVP-BEZ235 and GS-1101. NVP-BEZ235, a dual inhibitor of p-AKT and mTOR, reduced MCL-1 levels causing BIM release from MCL-1 and BCL-xL, thus leading to cell death by BAX activation. The PI3Kδ inhibitor GS-1101 (idelalisib) downregulated MCL-1 and sensitized ABT199-R cells through AKT-mediated BAX activation. A genetic approach, through siRNA-mediated down-regulation of AKT, MCL-1, and BCL-xL, significantly decreased cell survival, demonstrating the importance of these cell survival factors for ABT-199 resistance. Our findings suggest a novel mechanism that modulates the expression and activity of pro-survival proteins to confer treatment resistance that could be exploited by a rational combination therapeutic regimen that could be effective for treating lymphoid malignancies.
Blood | 2011
Sayer Al-Harbi; Brian T. Hill; Suparna Mazumder; Kamini Singh; Jennifer DeVecchio; Gaurav S. Choudhary; Lisa Rybicki; Matt Kalaycio; Jaroslaw P. Maciejewski; Janet A. Houghton; Alexandru Almasan
The antiapoptotic BCL-2 proteins regulate lymphocyte survival and are over-expressed in lymphoid malignancies, including chronic lymphocytic leukemia. The small molecule inhibitor ABT-737 binds with high affinity to BCL-2, BCL-XL, and BCL-W but with low affinity to MCL-1, BFL-1, and BCL-B. The active analog of ABT-737, navitoclax, has shown a high therapeutic index in lymphoid malignancies; developing a predictive marker for it would be clinically valuable for patient selection or choice of drug combinations. Here we used RT-PCR as a highly sensitive and quantitative assay to compare expression of antiapoptotic BCL-2 genes that are known to be targeted by ABT-737. Our findings reveal that the relative ratio of MCL-1 and BFL-1 to BCL-2 expression provides a highly significant linear correlation with ABT-737 sensitivity (r = 0.6, P < .001). In contrast, antiapoptotic transcript levels, used individually or in combination for high or low affinity ABT-737-binding proteins, could not predict ABT-737 sensitivity. The (MCL-1 + BFL-1)/BCL-2 ratio was validated in a panel of leukemic cell lines subjected to genetic and pharmacologic manipulations. Changes after ABT-737 treatment included increased expression of BFL-1 and BCL-B that may contribute to treatment resistance. This study defines a highly significant BCL-2 expression index for predicting the response of CLL to ABT-737.
Cancer Research | 2012
Suparna Mazumder; Gaurav S. Choudhary; Sayer Al-Harbi; Alexandru Almasan
ABT-737 is a small molecule Bcl-2 homology (BH)-3 domain mimetic that binds to the Bcl-2 family proteins Bcl-2 and Bcl-xL and is currently under investigation in the clinic. In this study, we investigated potential mechanisms of resistance to ABT-737 in leukemia cell lines. Compared with parental cells, cells that have developed acquired resistance to ABT-737 showed increased expression of Mcl-1 in addition to posttranslational modifications that facilitated both Mcl-1 stabilization and its interaction with the BH3-only protein Bim. To sensitize resistant cells, Mcl-1 was targeted by two pan-Bcl-2 family inhibitors, obatoclax and gossypol. Although gossypol was effective only in resistant cells, obatoclax induced cell death in both parental and ABT-737-resistant cells. NOXA levels were increased substantially by treatment with gossypol and its expression was critical for the gossypol response. Mechanistically, the newly generated NOXA interacted with Mcl-1 and displaced Bim from the Mcl-1/Bim complex, freeing Bim to trigger the mitochondrial apoptotic pathway. Together, our findings indicate that NOXA and Mcl-1 are critical determinants for gossypol-mediated cell death in ABT-737-resistant cells. These data therefore reveal novel insight into mechanisms of acquired resistance to ABT-737.
The Journal of Pathology | 2009
Jehad Abubaker; Prashant Bavi; Wael Al-Haqawi; Mehar Sultana; Sayer Al-Harbi; Nasser Al-Sanea; Alaa Abduljabbar; Luai H. Ashari; Samar Alhomoud; Fouad Al-Dayel; Shahab Uddin; Khawla S. Al-Kuraya
Somatic KRAS mutation is an early well‐known event in colorectal carcinogenesis but a complete understanding of RAS function and dysfunction in colorectal cancer is still to come. Our aim was to study the incidence of KRAS mutation; KRAS splice variants: KRAS4A and KRAS4B; and their relationships with various clinico‐pathological characteristics in colorectal cancer (CRC).In this study, 285 CRC cases were analysed for KRAS mutation by direct DNA sequencing followed by immunohistochemical analysis after validation with real‐time PCR assay, to study the protein expression of KRAS4A and ‐4B isoforms. KRAS gene mutations were seen in 80/285 CRCs (28.1%) and of the mutated cases, the majority of the mutations were seen in codon 12 (81.2%) as opposed to codon 13 (18.8%). CRCs with KRAS mutations were associated with a poor overall survival (p = 0.0009). Furthermore, KRAS mutations at codon 12 were associated with a poor overall survival of 64.4% at 5 years compared with a 5‐year overall survival of 75.8% and 78.2% with codon 13 mutation and absence of KRAS mutations, respectively (p = 0.0025). KRAS4A protein expression was predominantly seen in the cytoplasm, while KRAS4B protein was nuclear. KRAS4A overexpression was significantly associated with left colon, histology subtype of adenocarcinoma, p27kip1, and cleaved caspase3 expression. Interestingly, KRAS4A overexpression was associated with a better overall survival (p = 0.0053). On the other hand, KRAS4B overexpression (33.2%) was significantly associated with larger tumour size (p = 0.0234) and inversely correlated with p27kip1 protein (p = 0.0159). Both KRAS mutation and KRAS4A were independent prognostic markers in a multivariate analysis with age, gender, stage, differentiation, and MSI status. Our results highlight the differential role of KRAS isoforms in CRC, their utility as a prognostic biomarker, and underline the importance of KRAS alterations as a potential therapeutic target for CRC. Copyright
Molecular Cancer | 2015
Sayer Al-Harbi; Gaurav S. Choudhary; Jey Sabith Ebron; Brian T. Hill; Nagarajavel Vivekanathan; Angela H. Ting; Tomas Radivoyevitch; Mitchell R. Smith; Girish C. Shukla; Alex Almasan
BackgroundBCL-xL is an anti-apoptotic BCL-2 family protein that inhibits apoptosis and is overexpressed in many cancers. We have reported that acquired resistance to the BCL-2 inhibitor ABT-199 (venetoclax) is associated with increased BCL-xL expression. Yet, how BCL-xL mediates chemoresistance in hematopoietic malignancies is not clear. This finding may help in design of new strategies for therapeutic intervention to overcome acquired chemoresistance mediated by BCL-xL.ResultsWe now show that the increased BCL-xL expression was inversely correlated with that of miR-377 in ABT-199-resistant cells. This finding was also extended to a panel of B-cell lymphoid lines and primary chronic lymphocytic leukemia (CLL) cells. miR-377 suppressed BCL-xL expression by recognizing two binding sites in the BCL-xL 3’-UTR. Mutation of these two miR-377 consensus-binding sites completely abolished its regulatory effect. Expression of a miR-377 mimic downregulated BCL-xL protein expression and significantly increased apoptotic cell death. Expression of a miR-377 inhibitor restored BCL-xL protein expression and limited cell death caused by the hypomethylating agent 5-azacytidine. Thus, miR-377-dependent BCL-xL regulation drives acquired therapeutic resistance to ABT-199. We further show that CLL patients who received a diverse array of chemotherapy regimens also had significantly higher BCL-xL and lower miR377 expression, indicating that exposure to chemotherapy might trigger transcriptional silencing of miR-377, which results in high levels of BCL-xL. Importantly, CLL patients with high BCL-xL/low miR-377 expression had an advanced tumor stage. Moreover, the high BCL-xL expression correlated with short treatment-free survival in 76 CLL patients. miR-377 is located at 14q32 in the DLK1-DIO3 region, which encodes the largest tumor suppressor miRNA cluster in humans. Examination of five additional 14q32 miRNAs revealed that the majority were significantly down-regulated in most CLL patients as well as in ABT-199-resistant cell lines. Remarkably, four of these miRNAs had significantly decreased expression in chemotherapy-treated CLL patients as compared to those untreated. These findings indicate a reduced expression of multiple miRNAs that may reflect a global silencing of this miRNA cluster in therapy-resistant lymphoid cells.ConclusionsThese findings reveal a novel mechanism by which down-regulation of miR-377 increases BCL-xL expression, promoting chemotherapy resistance in B-cell lymphoid malignancies.
Journal of Leukemia | 2014
Ashley E. Rosko; Karen S. McColl; Fei Zhong; Christopher B. Ryder; Ming-Jin Chang; Abdus Sattar; Paolo F. Caimi; Brian T. Hill; Sayer Al-Harbi; Alexandru Almasan; Clark W. Distelhorst
The tumor microenvironment is generally an acidic environment, yet the effect of extracellular acidosis on chronic lymphocytic leukemia (CLL) is not well established. Here we are the first to report that the extracellular acid sensing G-protein coupled receptor, GPR65, is expressed in primary CLL cells where its level correlate strongly with anti-apoptotic Bcl-2 family member levels. GPR65 expression is found normally within the lymphoid lineage and has not been previously reported in CLL. We demonstrate a wide range of GPR65 mRNA expression among CLL 87 patient samples. The correlation between GPR65 mRNA levels and Bcl-2 mRNA levels is particularly strong (r=0.8063, p= <0.001). The correlation extends to other anti-apoptotic Bcl-2 family members, Mcl-1 (r=0.4847, p=0.0010) and Bcl-xl (r=0.3411, p=0.0252), although at lower levels of significance. No correlation is detected between GPR65 and levels of the pro-apoptotic proteins BIM, PUMA or NOXA. GPR65 expression also correlates with the favorable prognostic marker of 13q deletion. The present findings suggest the acid sensing receptor GPR65 may be of significance to allow CLL tolerance of extracellular acidosis. The correlation of GPR65 with Bcl-2 suggests a novel cytoprotective mechanism that enables CLL cell adaptation to acidic extracellular conditions. These findings suggest the potential value of targeting GPR65 therapeutically.
Archive | 2015
Sayer Al-Harbi; Gaurav S. Choudhary; Jey Sabith Ebron; Brian T. Hill; Nagarajavel Vivekanathan; Angela Ting; T. Radivoyevitch; Mitchell R. Smith; Girish C. Shukla; Alex Almasan
Kaplan-Meier curves for correlation of treatment-free survival with pro-apoptotic BCL-2 expression levels. (A) PUMA, (B) NOXA, and (C) BIM. P values shown are for the log-rank test. (JPEG 309 kb)
Cancer Research | 2012
Kamini Singh; Sayer Al-Harbi; Akwasi Agyeman; Janet A. Houghton; Warren D. Heston; Alex Almasan
DNA damage is known to induce cell cycle arrest followed by DNA damage repair (DDR) or apoptosis depending upon the extent of the DNA damage. DNA damage has also been shown to induce autophagy, a catabolic process involving the degradation of cellular organelles and proteins, to provide the energy needs for critical cellular processes. Excessive or defective autophagy can mediate cell death as a consequence of the degradation of vital organelles and/or accumulation of toxic cellular content. However, in many tumor cells, autophagy can be an acquired mechanism for cell survival that has evolved to provide higher energy and to remove the non-functional mitochondria for more efficient cellular function. In this study we show that ionizing radiation-induced DNA damage can induce autophagy in prostate cancer cells. LC3 lipidation (LC3 II), a classical marker for autophagy signaling was observed following irradiation. The steady state levels of LC3 II were not affected, however there was increased accumulation of LC3 II following irradiation in the presence of chloroquine, an inhibitor of autolysosomal formation and acidification. This observation suggested that autophagy is induced by DNA damage. Cell death analysis showed that autophagy served as a protective mechanism since inhibiting autophagy by pharmacological inhibitors, such as 3-MA and chloroquine, as well as genetic knockdown of ATG7 and LAMP2, sensitized prostate cancer cells to irradiation induced cell death, as shown by increased sub-G1 DNA content and reduced clonogenic survival. In autophagy-deficient cells, there were increased γH2AX and 53BP1 foci compared to autophagy-proficient cells, an indication that DDR is inhibited upon inhibiting autophagy. Moreover, comet assay revealed increased tail length in autophagy-deficient cells indicating accumulation of damaged DNA. Collectively, these observations suggest that DNA damage-induced autophagy can facilitate DDR signaling and cell cycle progression while autophagy inhibition can inhibit DDR signaling resulting in increased apoptosis. Investigating cell cycle checkpoints and activation of apoptosis in autophagy-deficient cells could help to understand the role of autophagy in mediating DDR and cell cycle progression following irradiation. Autophagy, similar to DNA repair may play a critical function in the cellular response to ionizing radiation, an oxidizing agent that damages not only DNA but other cellular molecules and organelles. These findings could help to identify specific autophagy inhibitors for sensitizing tumor cells to irradiation leading to increased tumor cell death. Citation Format: Kamini Singh, Sayer R. Al-Harbi, Akwasi Agyeman, Janet A. Houghton, Warren D. Heston, Alex Almasan. DNA damage-induced autophagy is required for efficient DNA repair and cell cycle progression [abstract]. In: Proceedings of the AACR Special Conference on Advances in Prostate Cancer Research; 2012 Feb 6-9; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2012;72(4 Suppl):Abstract nr C46.
The Journal of Clinical Endocrinology and Metabolism | 2008
Jehad Abubaker; Zeenath Jehan; Prashant Bavi; Mehar Sultana; Sayer Al-Harbi; Muna Ibrahim; Abdulrahman Al-Nuaim; Mohammed Ahmed; Tarek Amin; Maha Al-Fehaily; Osama Al-Sanea; Fouad Al-Dayel; Shahab Uddin; Khawla S. Al-Kuraya