Scarla J. Weeks
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Scarla J. Weeks.
PLOS ONE | 2009
Guillermo Diaz-Pulido; Sophie Dove; Ray Berkelmans; George Roff; David I. Kline; Scarla J. Weeks; Richard D. Evans; David H. Williamson; Ove Hoegh-Guldberg
Background Coral reefs around the world are experiencing large-scale degradation, largely due to global climate change, overfishing, diseases and eutrophication. Climate change models suggest increasing frequency and severity of warming-induced coral bleaching events, with consequent increases in coral mortality and algal overgrowth. Critically, the recovery of damaged reefs will depend on the reversibility of seaweed blooms, generally considered to depend on grazing of the seaweed, and replenishment of corals by larvae that successfully recruit to damaged reefs. These processes usually take years to decades to bring a reef back to coral dominance. Methodology/Principal Findings In 2006, mass bleaching of corals on inshore reefs of the Great Barrier Reef caused high coral mortality. Here we show that this coral mortality was followed by an unprecedented bloom of a single species of unpalatable seaweed (Lobophora variegata), colonizing dead coral skeletons, but that corals on these reefs recovered dramatically, in less than a year. Unexpectedly, this rapid reversal did not involve reestablishment of corals by recruitment of coral larvae, as often assumed, but depended on several ecological mechanisms previously underestimated. Conclusions/Significance These mechanisms of ecological recovery included rapid regeneration rates of remnant coral tissue, very high competitive ability of the corals allowing them to out-compete the seaweed, a natural seasonal decline in the particular species of dominant seaweed, and an effective marine protected area system. Our study provides a key example of the doom and boom of a highly resilient reef, and new insights into the variability and mechanisms of reef resilience under rapid climate change.
Journal of Fish Biology | 2012
Lydie I. E. Couturier; Andrea D. Marshall; Fabrice R. A. Jaine; Tom Kashiwagi; Simon J. Pierce; Kathy A. Townsend; Scarla J. Weeks; Michael B. Bennett; Anthony J. Richardson
The Mobulidae are zooplanktivorous elasmobranchs comprising two recognized species of manta rays (Manta spp.) and nine recognized species of devil rays (Mobula spp.). They are found circumglobally in tropical, subtropical and temperate coastal waters. Although mobulids have been recorded for over 400 years, critical knowledge gaps still compromise the ability to assess the status of these species. On the basis of a review of 263 publications, a comparative synthesis of the biology and ecology of mobulids was conducted to examine their evolution, taxonomy, distribution, population trends, movements and aggregation, reproduction, growth and longevity, feeding, natural mortality and direct and indirect anthropogenic threats. There has been a marked increase in the number of published studies on mobulids since c. 1990, particularly for the genus Manta, although the genus Mobula remains poorly understood. Mobulid species have many common biological characteristics although their ecologies appear to be species-specific, and sometimes region-specific. Movement studies suggest that mobulids are highly mobile and have the potential to rapidly travel large distances. Fishing pressure is the major threat to many mobulid populations, with current levels of exploitation in target fisheries unlikely to be sustainable. Advances in the fields of population genetics, acoustic and satellite tracking, and stable-isotope and fatty-acid analyses will provide new insights into the biology and ecology of these species. Future research should focus on the uncertain taxonomy of mobulid species, the degree of overlap between their large-scale movement and human activities such as fisheries and pollution, and the need for management of inter-jurisdictional fisheries in developing nations to ensure their long-term sustainability. Closer collaboration among researchers worldwide is necessary to ensure standardized sampling and modelling methodologies to underpin global population estimates and status.
Geophysical Research Letters | 2001
Pierrick Penven; J. R. E. Lutjeharms; Patrick Marchesiello; Claude Roy; Scarla J. Weeks
Anti-cyclonic rings are shed from the Agulhas Current at its retroflection. They subsequently drift off into the South Atlantic. Smaller, cyclonic eddies have also been observed in this region. The origin of these latter eddies has remained unknown. We present model results that indicate that the configuration of the southern Agulhas Current and the poleward termination of the continental shelf of Africa allows shedding of cyclonic lee eddies by a flow detachment process. Hydrographic data, thermal infrared satellite images and altimetric observations are furnished that show that this model simulation is consistent with the characteristics and the behaviour of cyclonic eddies in the region.
Marine Pollution Bulletin | 2014
Katharina E. Fabricius; M. Logan; Scarla J. Weeks; Jon Brodie
Changes in water clarity across the shallow continental shelf of the central Great Barrier Reef were investigated from ten years of daily river load, oceanographic and MODIS-Aqua data. Mean photic depth (i.e., the depth of 10% of surface irradiance) was related to river loads after statistical removal of wave and tidal effects. Across the ∼25,000 km(2) area, photic depth was strongly related to river freshwater and phosphorus loads (R(2)=0.65 and 0.51, respectively). In the six wetter years, photic depth was reduced by 19.8% and below water quality guidelines for 156 days, compared to 9 days in the drier years. After onset of the seasonal river floods, photic depth was reduced for on average 6-8 months, gradually returning to clearer baseline values. Relationships were strongest inshore and midshelf (∼12-80 km from the coast), and weaker near the chronically turbid coast. The data show that reductions in river loads would measurably improve shelf water clarity, with significant ecosystem health benefits.
Journal of Fish Biology | 2011
Christoph A. Rohner; Anthony J. Richardson; Andrea D. Marshall; Scarla J. Weeks; Simon J. Pierce
Laser photogrammetry was found to be a promising new cost-effective technique for measuring free-swimming whale sharks Rhincodon typus. Photogrammetric measurements were more precise than visual size estimates by experienced researchers, with results from the two methods differing by 9· 8 ± 1· 1% (mean ±s.e.). A new metric of total length and the length between the fifth gill and first dorsal fin (r² = 0· 93) is proposed to facilitate easy, accurate length measurements of whale sharks in the field.
Marine and Freshwater Research | 2011
Lydie I. E. Couturier; Fabrice R. A. Jaine; Kathy A. Townsend; Scarla J. Weeks; Anthony J. Richardson; Michael B. Bennett
Despite the increasing tourism interest worldwide for the manta ray, Manta alfredi, very little is known about its biology and ecology. Knowledge of its distribution and movement patterns is important for conservation purposes. Here we describe the distribution, site visitation and movements of M. alfredi along the east coast of Australia. Photographic identification techniques were used to identify individual manta rays at three study sites: Lady Elliot Island, North Stradbroke Island and Byron Bay. Of 388 M. alfredi individuals identified at Lady Elliot Island, 187 (48%) were subsequently re-identified at least once at the same site. In total, 31 individuals were identified at both Lady Elliot Island and North Stradbroke Island (,380km to the south) and 4 at both Lady Elliot Island and Byron Bay (,500km to the south). Manta alfredi was present all year around at Lady Elliot Island, although in higher numbers in winter, and was mainly observed at North Stradbroke Island and Byron Bay from mid-spring to mid-autumn. This is the first report of seasonal movements and site affinity forM. alfredi ineastern Australian waters and emphasises the value of photographic identification for monitoring the occurrence of individuals.
PLOS ONE | 2013
Lydie I. E. Couturier; Christoph A. Rohner; Anthony J. Richardson; Andrea D. Marshall; Fabrice R. A. Jaine; Michael B. Bennett; Kathy A. Townsend; Scarla J. Weeks; Peter D. Nichols
Assessing the trophic role and interaction of an animal is key to understanding its general ecology and dynamics. Conventional techniques used to elucidate diet, such as stomach content analysis, are not suitable for large threatened marine species. Non-lethal sampling combined with biochemical methods provides a practical alternative for investigating the feeding ecology of these species. Stable isotope and signature fatty acid analyses of muscle tissue were used for the first time to examine assimilated diet of the reef manta ray Manta alfredi, and were compared with different zooplankton functional groups (i.e. near-surface zooplankton collected during manta ray feeding events and non-feeding periods, epipelagic zooplankton, demersal zooplankton and several different zooplankton taxa). Stable isotope δ15N values confirmed that the reef manta ray is a secondary consumer. This species had relatively high levels of docosahexaenoic acid (DHA) indicating a flagellate-based food source in the diet, which likely reflects feeding on DHA-rich near-surface and epipelagic zooplankton. However, high levels of ω6 polyunsaturated fatty acids and slightly enriched δ13C values in reef manta ray tissue suggest that they do not feed solely on pelagic zooplankton, but rather obtain part of their diet from another origin. The closest match was with demersal zooplankton, suggesting it is an important component of the reef manta ray diet. The ability to feed on demersal zooplankton is likely linked to the horizontal and vertical movement patterns of this giant planktivore. These new insights into the habitat use and feeding ecology of the reef manta ray will assist in the effective evaluation of its conservation needs.
Journal of Geophysical Research | 1994
Scarla J. Weeks; F. A. Shillington
South African oceanographers were engaged in collecting hydrographic and biological sea truth data in order to calibrate the coastal zone color scanner (CZCS) measurements from the Nimbus 7 satellite over the Benguela Upwelling region near Cape Town, South Africa, during the period 1978 to 1981 (Shannon, 1985). We give a brief overview of this research and then concentrate on a more recent analysis of level III CZCS data obtained from NASA for the region 10-60-degrees-S, 10-100-degrees-E. This area includes the Benguela Upwelling system on the continental shelf and the southern ocean with the Subtropical Convergence zone south of Africa. High annual concentrations of chlorophyll (5 mg m-3) typical of other upwelling systems in the world ocean occurred in the Benguela shelf region, and the data show a strong interannual signal in the 7 years of composited data from 1978 to 1985. Two distinct regimes were found in the Benguela Upwelling system, the seasonal variations of pigment concentration in the northern and southern Benguela regions being out of phase. In the southern ocean, levels of chlorophyll were generally low (0.15 mg m-3), with the strongest signal (1.5 mg m-3) found at the southern border of the Agulhas retroflection region and its frontal boundary with the colder Subantarctic water to the south. The high levels of chlorophyll found in this region are 10 times those of the typical open southern ocean. There is a very clear interannual signal in the CZCS data for this Subtropical Convergence region, which has a low value in 1979, rises to a maximum in 1981, and then decreases to another low value in 1985. There appears to be no clear seasonal variation in the Subtropical Convergence data. Reasons for the strong signal in the surface chlorophyll concentrations at the front between the Agulhas Return Current and the southern ocean are discussed, and it is shown that the Agulhas Plateau sets up a topographic Rossby ave in the Agulhas Return Current, which can be clearly identified in the CZCS signal.
Conservation Biology | 2012
Natalie C. Ban; Robert L. Pressey; Scarla J. Weeks
Spatial and temporal dynamics of ecological processes have long been considered important in marine systems, but seldom have conservation objectives been set for them. Climate change makes the consideration of the dynamics of ecological processes in the design of marine protected areas critical. We analyzed sea-surface temperature (SST) trends and variability in Great Barrier Reef Marine Park (GBRMP) for 25 years and formulated and tested whether three sets of notional conservation objectives were met to illustrate the potential for planning to address climate change. Given mixed and limited evidence that no-take areas increase resilience to disturbances such as anomalously high temperatures (i.e., temperatures ≥1 °C above weekly mean temperature), our conservation objectives focused on areas less likely to be affected by such events at extents ranging from the entire Great Barrier Reef to the system of no-take zones and individual no-take zones. The objective sets were (1) at least 50% of temperature refugia (i.e., pixels that had high-temperature anomalies <5% or <7% of the time) within no-take zones, (2) maximum occurrence of high-temperature anomalies is <10%,< 20%, or <30% of total no-take area 90% of the time, and (3) coverage of any single no-take zone by high-temperature anomalies occurs <5% or <10% of the time. We used satellite imagery from 1985-2009 to measure SST to determine high-temperature anomalies. SSTs in the Great Barrier Reef increased significantly in some regions, and some of the conservation objectives were met by the parks current zoning plan. Dialogue between conservation scientists and managers is needed to develop appropriate conservation objectives under climate change and strategies to meet them.
PLOS ONE | 2011
Timothy F. Cooper; Ray Berkelmans; Karin E. Ulstrup; Scarla J. Weeks; Ben Radford; Alison Jones; Jason Doyle; Marites Canto; Rebecca A. O'Leary; Madeleine J. H. van Oppen
Background The Symbiodinium community associated with scleractinian corals is widely considered to be shaped by seawater temperature, as the corals upper temperature tolerance is largely contingent on the Symbiodinium types harboured. Few studies have challenged this paradigm as knowledge of other environmental drivers on the distribution of Symbiodinium is limited. Here, we examine the influence of a range of environmental variables on the distribution of Symbiodinium associated with Acropora millepora collected from 47 coral reefs spanning 1,400 km on the Great Barrier Reef (GBR), Australia. Methodology/Principal Findings The environmental data included Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data at 1 km spatial resolution from which a number of sea surface temperature (SST) and water quality metrics were derived. In addition, the carbonate and mud composition of sediments were incorporated into the analysis along with in situ water quality samples for a subset of locations. Analyses were conducted at three spatio-temporal scales [GBR (regional-scale), Whitsunday Islands (local-scale) and Keppel Islands/Trunk Reef (temporal)] to examine the effects of scale on the distribution patterns. While SST metrics were important drivers of the distribution of Symbiodinium types at regional and temporal scales, our results demonstrate that spatial variability in water quality correlates significantly with Symbiodinium distribution at local scales. Background levels of Symbiodinium types were greatest at turbid inshore locations of the Whitsunday Islands where SST predictors were not as important. This was not the case at regional scales where combinations of mud and carbonate sediment content coupled with SST anomalies and mean summer SST explained 51.3% of the variation in dominant Symbiodinium communities. Conclusions/Significance Reef corals may respond to global-scale stressors such as climate change through changes in their resident symbiont communities, however, management of local-scale stressors such as altered water quality is also necessary for maintenance of coral-Symbiodinium associations.
Collaboration
Dive into the Scarla J. Weeks's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs