Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Schahram Akbarian is active.

Publication


Featured researches published by Schahram Akbarian.


Nature Genetics | 2001

Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice.

Richard Z. Chen; Schahram Akbarian; Matthew Tudor; Rudolf Jaenisch

Mecp2 is an X-linked gene encoding a nuclear protein that binds specifically to methylated DNA (ref. 1) and functions as a general transcriptional repressor by associating with chromatin-remodeling complexes. Mecp2 is expressed at high levels in the postnatal brain, indicating that methylation-dependent regulation of gene expression may have a crucial role in the mammalian central nervous system. Consistent with this notion is the recent demonstration that MECP2 mutations cause Rett syndrome (RTT, MIM 312750), a childhood neurological disorder that represents one of the most common causes of mental retardation in females. Here we show that Mecp2-deficient mice exhibit phenotypes that resemble some of the symptoms of RTT patients. Mecp2-null mice were normal until 5 weeks of age, when they began to develop disease, leading to death between 6 and 12 weeks. Mutant brains showed substantial reduction in both weight and neuronal cell size, but no obvious structural defects or signs of neurodegeneration. Brain-specific deletion of Mecp2 at embryonic day (E) 12 resulted in a phenotype identical to that of the null mutation, indicating that the phenotype is caused by Mecp2 deficiency in the CNS rather than in peripheral tissues. Deletion of Mecp2 in postnatal CNS neurons led to a similar neuronal phenotype, although at a later age. Our results indicate that the role of Mecp2 is not restricted to the immature brain, but becomes critical in mature neurons. Mecp2 deficiency in these neurons is sufficient to cause neuronal dysfunction with symptomatic manifestation similar to Rett syndrome.


Biological Psychiatry | 2007

Antidepressant-Like Effects of the Histone Deacetylase Inhibitor, Sodium Butyrate, in the Mouse

Frederick Albert Schroeder; Cong L. Lin; Wim E. Crusio; Schahram Akbarian

BACKGROUND Chromatin remodeling, including changes in histone acetylation, might play a role in the pathophysiology and treatment of depression. We investigated whether the histone deacetylase inhibitor sodium butyrate (SB) administered as single drug or in combination with the selective serotonin reuptake inhibitor (SSRI) fluoxetine exerts antidepressant-like effects in mice. METHODS Mice (C57BL/6J) received injections of SB, fluoxetine, or a combination of both drugs either acutely or chronically for a period of 28 days and were subjected to a battery of tests to measure anxiety and behavioral despair. Histone acetylation and expression of brain-derived neurotrophic factor (BDNF) were monitored in hippocampus and frontal cortex. RESULTS Co-treatment with SB and fluoxetine resulted in a significant 20%-40% decrease in immobility scores in the tail suspension test (TST), a measure for behavioral despair, both acutely and chronically. In contrast, decreased immobility after single drug regimens was limited either to the acute (fluoxetine) or chronic (SB) paradigm. Systemic injection of SB induced short-lasting histone hyperacetylation in hippocampus and frontal cortex. Among the four treatment paradigms that resulted in improved immobility scores in the TST, three were associated with a transient, at least 50% increase in BDNF transcript in frontal cortex, whereas changes in hippocampus were less consistent. CONCLUSIONS The histone deacetylase inhibitor SB exerts antidepressant-like effects in the mouse. The therapeutic benefits and molecular actions of histone modifying drugs, including co-treatment with SSRIs and other newer generation antidepressant medications, warrant further exploration in experimental models.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain.

Matthew Tudor; Schahram Akbarian; Richard Z. Chen; Rudolf Jaenisch

The Mecp2 gene has been shown to be mutated in most cases of human Rett syndrome, and mouse models deleted for the ortholog have been generated. Lineage-specific deletion of the gene indicated that the Rett-like phenotype is caused by Mecp2 deficiency in neurons. Biochemical evidence suggests that Mecp2 acts as a global transcriptional repressor, predicting that mutant mice should have genome-wide transcriptional deregulation. We tested this hypothesis by comparing global gene expression in wild-type and Mecp2 mutant mice. The results of numerous microarray analyses revealed no dramatic changes in transcription even in mice displaying overt disease symptoms, although statistical power analyses of the data indicated that even a small number of relatively subtle changes in transcription would have been detected if present. However, a classifier consisting of a combined small set of genes was able to distinguish between mutant and wild-type samples with high accuracy. This result suggests that Mecp2 deficiency leads to subtle gene expression changes in mutant brains which may be associated with the phenotypic changes observed.


Brain Research Reviews | 2006

Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders.

Schahram Akbarian; Hsien-Sung Huang

The 67 and 65 kDa isoforms of glutamic acid decarboxylase, the key enzymes for GABA biosynthesis, are expressed at altered levels in postmortem brain of subjects diagnosed with schizophrenia and related disorders, including autism and bipolar illness. The predominant finding is a decrease in GAD67 mRNA levels, affecting multiple brain regions, including prefrontal and temporal cortex. Postmortem studies, in conjunction with animal models, identified several mechanisms that contribute to the dysregulation of GAD67 in cerebral cortex. These include disordered connectivity formation during development, abnormal expression of Reelin and neural cell adhesion molecule (NCAM) glycoproteins, defects in neurotrophin signaling and alterations in dopaminergic and glutamatergic neurotransmission. These mechanisms are likely to operate in conjunction with genetic risk factors for psychosis, including sequence polymorphisms residing in the promoter of GAD1 (2q31), the gene encoding GAD67. We propose an integrative model, with multiple molecular and cellular mechanisms contributing to transcriptional dysregulation of GAD67 and cortical dysfunction in psychosis.


Nature Medicine | 2012

Epigenetic mechanisms in neurological disease

Mira Jakovcevski; Schahram Akbarian

The exploration of brain epigenomes, which consist of various types of DNA methylation and covalent histone modifications, is providing new and unprecedented insights into the mechanisms of neural development, neurological disease and aging. Traditionally, chromatin defects in the brain were considered static lesions of early development that occurred in the context of rare genetic syndromes, but it is now clear that mutations and maladaptations of the epigenetic machinery cover a much wider continuum that includes adult-onset neurodegenerative disease. Here, we describe how recent advances in neuroepigenetics have contributed to an improved mechanistic understanding of developmental and degenerative brain disorders, and we discuss how they could influence the development of future therapies for these conditions.


The Journal of Neuroscience | 2007

Prefrontal Dysfunction in Schizophrenia Involves Mixed-Lineage Leukemia 1-Regulated Histone Methylation at GABAergic Gene Promoters

Hsien-Sung Huang; Anouch Matevossian; Catheryne Whittle; Se Young Kim; Armin Schumacher; Stephen P. Baker; Schahram Akbarian

Alterations in GABAergic mRNA expression play a key role for prefrontal dysfunction in schizophrenia and other neurodevelopmental disease. Here, we show that histone H3-lysine 4 methylation, a chromatin mark associated with the transcriptional process, progressively increased at GAD1 and other GABAergic gene promoters (GAD2, NPY, SST) in human prefrontal cortex (PFC) from prenatal to peripubertal ages and throughout adulthood. Alterations in schizophrenia included decreased GAD1 expression and H3K4-trimethylation, predominantly in females and in conjunction with a risk haplotype at the 5′ end of GAD1. Heterozygosity for a truncated, lacZ knock-in allele of mixed-lineage leukemia 1 (Mll1), a histone methyltransferase expressed in GABAergic and other cortical neurons, resulted in decreased H3K4 methylation at GABAergic gene promoters. In contrast, Gad1 H3K4 (tri)methylation and Mll1 occupancy was increased in cerebral cortex of mice after treatment with the atypical antipsychotic, clozapine. These effects were not mimicked by haloperidol or genetic ablation of dopamine D2 and D3 receptors, suggesting that blockade of D2-like signaling is not sufficient for clozapine-induced histone methylation. Therefore, chromatin remodeling mechanisms at GABAergic gene promoters, including MLL1-mediated histone methylation, operate throughout an extended period of normal human PFC development and play a role in the neurobiology of schizophrenia.


Biological Psychiatry | 2009

Molecular Determinants of Dysregulated GABAergic Gene Expression in the Prefrontal Cortex of Subjects with Schizophrenia

Nikolaos Mellios; Hsien-Sung Huang; Stephen P. Baker; Marzena Galdzicka; Edward I. Ginns; Schahram Akbarian

BACKGROUND Prefrontal deficits in gamma-aminobutyric acid (GABA)ergic gene expression, including neuropeptide Y (NPY), somatostatin (SST), and parvalbumin (PV) messenger RNAs (mRNAs), have been reported for multiple schizophrenia cohorts. Preclinical models suggest that a subset of these GABAergic markers (NPY/SST) is regulated by brain-derived neurotrophic factor (BDNF), which in turn is under the inhibitory influence of small noncoding RNAs. However, it remains unclear if these mechanisms are important determinants for dysregulated NPY and SST expression in prefrontal cortex (PFC) of subjects with schizophrenia. METHODS Using a postmortem case-control design, the association between BDNF protein, NPY/SST/PV mRNAs, and two BDNF-regulating microRNAs (miR-195 and miR-30a-5p) was determined in samples from the PFC of 20 schizophrenia and 20 control subjects. Complementary studies were conducted in cerebral cortex of mice subjected to antipsychotic treatment or a brain-specific ablation of the Bdnf gene. RESULTS Subjects with schizophrenia showed deficits in NPY and PV mRNAs. Within-pair differences in BDNF protein levels showed strong positive correlations with NPY and SST and a robust inverse association with miR-195 levels, which in turn were not affected by antipsychotic treatment or genetic ablation of Bdnf. CONCLUSIONS Taken together, these results suggest that prefrontal deficits in a subset of GABAergic mRNAs, including NPY, are dependent on the regional supply of BDNF, which in turn is fine-tuned through a microRNA (miRNA)-mediated mechanism.


Biological Psychiatry | 2009

Epigenetic regulation in human brain-focus on histone lysine methylation

Schahram Akbarian; Hsien-Sung Huang

Alterations in RNA levels are frequently reported in brain of subjects diagnosed with autism, schizophrenia, depression, and other psychiatric diseases, but it remains unclear whether the underlying molecular pathology involves changes in gene expression, as opposed to alterations in messenger RNA processing. Pre-clinical studies have revealed that stress, drugs, and a variety of other environmental factors lead to changes in RNA levels in brain via epigenetic mechanisms, including modification of histone proteins. A number of site-specific modifications of the nucleosome core histones-including the trimethylated forms of histone H3 lysines K4, K9, and K27-are of particular interest for postmortem research, because these marks differentiate between active and inactive chromatin and seem to remain relatively stable during tissue autolysis. Therefore, histone methylation profiling at promoter regions could provide important clues about mechanisms of gene expression in human brain during development and in disease. Intriguingly, mutations within the genes encoding the H3K9-specific methyltransferase, EHMT1, and the H3K4-specific histone demethylase, JARID1C/SMCX, have been linked to mental retardation and autism, respectively. In addition, the H3K4-specific methyltransferase, MLL1, is essential for hippocampal synaptic plasticity and might be involved in cortical dysfunction of some cases of schizophrenia. Together, these findings emphasize the potential significance of histone lysine methylation for orderly brain development and also as a molecular toolbox to study chromatin function in postmortem tissue.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex

Iris Cheung; Hennady P. Shulha; Yan Jiang; Anouch Matevossian; Jie Wang; Zhiping Weng; Schahram Akbarian

Little is known about the regulation of neuronal and other cell-type specific epigenomes from the brain. Here, we map the genome-wide distribution of trimethylated histone H3K4 (H3K4me3), a mark associated with transcriptional regulation, in neuronal and nonneuronal nuclei collected from prefrontal cortex (PFC) of 11 individuals ranging in age from 0.5 to 69 years. Massively parallel sequencing identified 12,732–19,704 H3K4me3 enriched regions (peaks), the majority located proximal to (within 2 kb of) the transcription start site (TSS) of annotated genes. These included peaks shared by neurons in comparison with three control (lymphocyte) cell types, as well as peaks specific to individual subjects. We identified 6,213 genes that show highly enriched H3K4me3 in neurons versus control. At least 1,370 loci, including annotated genes and novel transcripts, were selectively tagged with H3K4me3 in neuronal but not in nonneuronal PFC chromatin. Our results reveal age-correlated neuronal epigenome reorganization, including decreased H3K4me3 at approximately 600 genes (many function in developmental processes) during the first year after birth. In comparison, the epigenome of aging (>60 years) PFC neurons showed less extensive changes, including increased H3K4me3 at 100 genes. These findings demonstrate that H3K4me3 in human PFC is highly regulated in a cell type- and subject-specific manner and highlight the importance of early childhood for developmentally regulated chromatin remodeling in prefrontal neurons.


The Journal of Neuroscience | 2008

Epigenetics in the Nervous System

Yan Jiang; Brett Langley; Farah D. Lubin; William Renthal; Marcelo A. Wood; Dag H. Yasui; Arvind Kumar; Eric J. Nestler; Schahram Akbarian; Andrea Beckel-Mitchener

It is becoming increasingly clear that epigenetic modifications are critical factors in the regulation of gene expression. With regard to the nervous system, epigenetic alterations play a role in a diverse set of processes and have been implicated in a variety of disorders. Gaining a more complete understanding of the essential components and underlying mechanisms involved in epigenetic regulation could lead to novel treatments for a number of neurological and psychiatric conditions.

Collaboration


Dive into the Schahram Akbarian's collaboration.

Top Co-Authors

Avatar

Yan Jiang

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Amanda C. Mitchell

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cyril J. Peter

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric J. Nestler

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Panos Roussos

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Yin Guo

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Zhiping Weng

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge