Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scherolin O. Marques is active.

Publication


Featured researches published by Scherolin O. Marques.


Neurochemistry International | 2011

Effects of acute and chronic treatment elicited by lamotrigine on behavior, energy metabolism, neurotrophins and signaling cascades in rats.

Helena M. Abelaira; Gislaine Z. Réus; Karine F. Ribeiro; Giovanni Zappellini; Gabriela K. Ferreira; Lara M. Gomes; Milena Carvalho-Silva; Thais F. Luciano; Scherolin O. Marques; Emilio L. Streck; Cláudio T. De Souza; João Quevedo

The present study was aimed to investigate the behavioral and molecular effects of lamotrigine. To this aim, Wistar rats were treated with lamotrigine (10 and 20 mg/kg) or imipramine (30 mg/kg) acutely and chronically. The behavior was assessed using forced swimming test. Brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), Proteina Kinase B (PKB, AKT), glycogen synthase kinase 3 (GSK-3) and B-cell lymphoma 2 (Bcl-2) levels, citrate synthase, creatine kinase and mitochondrial chain (I, II, II-III and IV) activities were assessed in the brain. The results showed that both treatments reduced the immobility time. The BDNF were increased in the prefrontal after acute treatment with lamotrigine (20 mg/kg), and the BDNF and NGF were increased in the prefrontal after chronic treatment with lamotrigine in all doses. The AKT increased and Bcl-2 and GSK-3 decreased after both treatments in all brain areas. The citrate synthase and creatine kinase increased in the amygdala after acute treatment with imipramine. Chronic treatment with imipramine and lamotrigine (10 mg/kg) increased the creatine kinase in the hippocampus. The complex I was reduced and the complex II, II-III and IV were increased, but related with treatment and brain area. In conclusion, lamotrigine exerted antidepressant-like, which can be attributed to its effects on pathways related to depression, such as neurotrophins, metabolism energy and signaling cascade.


Lipids in Health and Disease | 2012

Exercise training performed simultaneously to a high-fat diet reduces the degree of insulin resistance and improves adipoR1-2/APPL1 protein levels in mice.

Jm Farias; Rm Maggi; Camila B. Tromm; Luciano A. Silva; Thais F. Luciano; Scherolin O. Marques; Fábio Santos Lira; C. T. De Souza; Ricardo A. Pinho

BackgroundThe aim of the present study was to evaluate the protective effect of concurrent exercise in the degree of the insulin resistance in mice fed with a high-fat diet, and assess adiponectin receptors (ADIPOR1 and ADIPOR2) and endosomal adaptor protein APPL1 in different tissues.MethodsTwenty-four mice were randomized into four groups (n = 6): chow standard diet and sedentary (C); chow standard diet and simultaneous exercise training (C-T); fed on a high-fat diet and sedentary (DIO); and fed on a high-fat diet and simultaneous exercise training (DIO-T). Simultaneously to starting high-fat diet feeding, the mice were submitted to a swimming exercise training protocol (2 x 30 minutes, with 5 minutes of interval/day), five days per week, for twelve weeks (90 days). Animals were then euthanized 48 hours after the last exercise training session, and adipose, liver, and skeletal muscle tissue were extracted for an immunoblotting analysis.ResultsIR, IRs, and Akt phosphorylation decreased in the DIO group in the three analyzed tissues. In addition, the DIO group exhibited ADIPOR1 (skeletal muscle and adipose tissue), ADIPOR2 (liver), and APPL1 reduced when compared with the C group. However, it was reverted when exercise training was simultaneously performed. In parallel, ADIPOR1 and 2 and APPL1 protein levels significantly increase in exercised mice.ConclusionsOur findings demonstrate that exercise training performed concomitantly to a high-fat diet reduces the degree of insulin resistance and improves adipoR1-2/APPL1 protein levels in the hepatic, adipose, and skeletal muscle tissue.


Life Sciences | 2012

RETRACTED: Reversion of hepatic steatosis by exercise training in obese mice: The role of sterol regulatory element-binding protein-1c

Dennys E. Cintra; Eduardo R. Ropelle; Marcelo F. Vitto; Thais F. Luciano; Daniela R. Souza; Julia Engelmann; Scherolin O. Marques; Fábio Santos Lira; Ricardo A. Pinho; José Rodrigo Pauli; Cláudio T. De Souza

AIM The dysregulation of regulatory element-binding protein-1c (SREBP-1c) is associated with hepatic steatosis. However, effects of exercise on SREBP-1c protein level in liver have not been investigated. Thus, in this study we investigated if reversion of the hepatic steatosis-induced by exercise training is related with levels of SREBP-1c. MAIN METHODS Mice were divided into two groups: control lean mice (CT), fed on standard rodent chow, and obese mice (HF), fed on a high-fat diet for 2months. After this period obese mice were divided in two groups: obese mice and obese mice submitted to exercise (HF+EXE). The HF+EXE group performed a running program of 50min per day, 5days per week, for 8weeks. Forty-eight hours after the last exercise session, biochemical, immunoblotting, histology and immunohistochemistry analyses were performed. KEY FINDINGS Livers of HF mice showed increased SREBP-1c, FAS (Fatty Acid Synthase), SCD1 (Stearoyl-CoA Desaturase1) and CPT1 (Carnitine Palmitoyl Transferase1) protein levels (3.4, 5.0, 2.6 and 2.9 times, respectively), though ACC (Acetyl-CoA Carboxilase) phosphorylation dropped 4.2 times. In livers of HF+EXE, levels of SREBP-1c, FAS, SCDI and CPTI decreased 2.1, 1.9, 1.8, and 2.7 times, respectively), while ACC phosphorylation increased 3.0 times. Lower SREBP-1c protein levels after exercise were confirmed also by immunohistochemistry. Total liver lipids content was higher in HF (2.2 times) when compared to CT, and exercise training reduced it significantly (1.7 times). SIGNIFICANCE Our study allows concluding that the reduction in SREBP-1c protein levels is associated with steatosis reversion induced by exercise training.


International Journal of Cardiology | 2013

Acute exercise induce endothelial nitric oxide synthase phosphorylation via Akt and AMP-activated protein kinase in aorta of rats: Role of reactive oxygen species

Viviane A. Barbosa; Thais F. Luciano; Scherolin O. Marques; Marcelo F. Vitto; Daniela R. Souza; Luciano A. Silva; João Paulo Almeida dos Santos; José Cláudio Fonseca Moreira; Felipe Dal-Pizzol; Fábio Santos Lira; Ricardo A. Pinho; Cláudio T. De Souza

BACKGROUND Acute exercise increases reactive oxygen species (ROS) levels, including hydrogen peroxide (H2O2). H2O2 promotes endothelial nitric oxide synthase (eNOS) activation and phosphorylation in endothelial cells. With this in mind, the present study was designed to evaluate ex vivo eNOS phosphorylation in rat aortas incubated with H2O2 and to test this hypothesis in vivo in the aortas of rats submitted to acute exercise. METHODS For ex vivo studies, six groups of aortic tissue were formed: control, H2O2, N-acetylcysteine (NAC), LY294002, compound C, and LY294002 plus compound C. While incubation with H2O2 increased Akt, AMPK and eNOS phosphorylation, pre-incubation with NAC strongly reduced the phosphorylation of these enzymes. For in vivo studies, male Wistar rats were divided into four groups: control, cont+NAC, exercise, and exer+NAC. After a 3h swimming session, animals were decapitated and aortas were excised for biochemical and immunoblotting analysis. RESULTS Acute exercise increased superoxide levels and dichlorofluorescein (DCF) concentrations, and this increase was related to phosphorylation of Akt, AMPK and eNOS. On the other hand, use of NAC reduced superoxide levels and DCF concentration. Reduced superoxide levels and DCF in the exer+NAC group were associated with decreased Akt, AMPK and eNOS phosphorylation. These results appear to be connected with vascular function because VASP phosphorylation increased in acute exercise and decreased in exer+NAC. CONCLUSION Our results indicate that ROS induced by acute exercise play the important role of activating eNOS, a process apparently mediated by Akt and AMPK.


Mediators of Inflammation | 2014

Treadmill Training Increases SIRT-1 and PGC-1α Protein Levels and AMPK Phosphorylation in Quadriceps of Middle-Aged Rats in an Intensity-Dependent Manner

Nara R. C. Oliveira; Scherolin O. Marques; Thais F. Luciano; José Rodrigo Pauli; Leandro Pereira de Moura; Érico Chagas Caperuto; Bruno L. S. Pieri; Julia Engelmann; Gisele Scaini; Emilio L. Streck; Fábio Santos Lira; Ricardo A. Pinho; Eduardo R. Ropelle; Adelino Sanchez Ramos da Silva; Cláudio T. De Souza

The present study investigated the effects of running at 0.8 or 1.2 km/h on inflammatory proteins (i.e., protein levels of TNF-α, IL-1β, and NF-κB) and metabolic proteins (i.e., protein levels of SIRT-1 and PGC-1α, and AMPK phosphorylation) in quadriceps of rats. Male Wistar rats at 3 (young) and 18 months (middle-aged rats) of age were divided into nonexercised (NE) and exercised at 0.8 or 1.2 km/h. The rats were trained on treadmill, 50 min per day, 5 days per week, during 8 weeks. Forty-eight hours after the last training session, muscles were removed, homogenized, and analyzed using biochemical and western blot techniques. Our results showed that: (a) running at 0.8 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with NE rats; (b) these responses were lower for the inflammatory proteins and higher for the metabolic proteins in young rats compared with middle-aged rats; (c) running at 1.2 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with 0.8 km/h; (d) these responses were similar between young and middle-aged rats when trained at 1.2 km. In summary, the age-related increases in inflammatory proteins, and the age-related declines in metabolic proteins can be reversed and largely improved by treadmill training.


Hormone and Metabolic Research | 2014

Effects of physical exercise on the P38MAPK/REDD1/14-3-3 pathways in the myocardium of diet-induced obesity rats.

Bruno L. S. Pieri; Daniela R. Souza; Thais F. Luciano; Scherolin O. Marques; José Rodrigo Pauli; Adelino Sanchez Ramos da Silva; Eduardo R. Ropelle; Ricardo A. Pinho; F. S. Lira; C. T. De Souza

Obesity is associated with myocardial insulin resistance and impairment of the mammalian target of rapamycin (mTOR) signaling pathway. The activation of the mTOR cascade by exercise has been largely shown in skeletal muscle, but insufficiently analyzed in myocardial tissue. In addition, little is known regarding the mTOR upstream molecules in the hearts of obese animals and even less about the role of exercise in this process. Thus, the present study was aimed to evaluate the effects of physical exercise on P38 Mitogen-Activated Protein Kinase (P38MAPK) phosphorylation and the REDD1 (regulated in development and DNA damage responses 1) and 14-3-3 protein levels in the myocardium of diet-induced obesity (DIO) rats. After achievement of DIO and insulin resistance, Wistar rats were divided in 2 groups: sedentary obese rats and obese rats performed treadmill running (50-min/day, 5 days per week velocity of 1.0 km/h for 2 months). Forty-eight hours after the final physical exercise, the rats were killed, and the myocardial tissue was removed for Western blot analysis. DIO increased the REDD1 protein levels and reduced the 14-3-3 protein levels and P38MAPK, mTOR, P70S6k (p70 ribosomal S6 protein kinase), and 4EBP1 (4E-binding protein-1) phosphorylation. Interestingly, physical exercise reduced the REDD1 protein levels and increased the 14-3-3 protein levels and P38MAPK, mTOR, P70S6k, and 4EBP1 phosphorylation. Moreover, exercise increased the REDD1/14-3-3 association in the heart. Our results indicate that the phospho-P38MAPK, REDD1, and 14-3-3 protein levels were reduced in the myocardium of obese rats and that physical exercise increased the protein levels of these molecules.


British Journal of Nutrition | 2013

Resveratrol and fish oil reduce catecholamine-induced mortality in obese rats: role of oxidative stress in the myocardium and aorta

Pricila R. M. Ávila; Scherolin O. Marques; Thais F. Luciano; Marcelo F. Vitto; Julia Engelmann; Daniela R. Souza; Sane V. Pereira; Ricardo A. Pinho; Fábio Santos Lira; Cláudio T. De Souza

The exact mechanisms of the relationship between obesity and cardiovascular events are not yet fully understood; however, oxidative stress may be involved. Thus, the aim of the present study was to evaluate the effects of resveratrol and fish oil on catecholamine-induced mortality in obese rats. To begin with, rats were divided into five groups: (1) lean, (2) obese, (3) obese supplemented with resveratrol, (4) obese supplemented with fish oil and (5) obese supplemented with resveratrol and fish oil (n 18 rats per group), for 2 months. After supplementation, the groups were subdivided as with (n 10) and without (n 8) cardiovascular catecholaminergic stress after isoproterenol (60 mg/kg) injection. At 24 h later, the survival rate was analysed. The obese group showed lower survival rates (10 %) when compared with the lean group (70 %). On the other hand, resveratrol (50 %) and fish oil (40 %) increased the survival rate of obese rats (χ(2) test, P= 0·019). Biochemical analyses of the myocardium and aorta revealed that obese rats had higher levels of superoxide and oxidative damage to lipids and protein. This was associated with reduced superoxide dismutase and glutathione peroxidase activity in both the myocardium and aorta. The supplementation increased antioxidant enzyme activities and reduced oxidative damage. We also evaluated the nuclear factor-erythroid 2 p45-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 antioxidant pathway. Nrf2 protein levels that were reduced in obese rats were increased by the antioxidant treatment. Taken together, these results showed that resveratrol and fish oil reduce catecholamine-induced mortality in obese rats, partly through the reduction of oxidative stress.


Hormone and Metabolic Research | 2012

Effect of physical training on the adipose tissue of diet-induced obesity mice: interaction between reactive oxygen species and lipolysis.

J. M. de Farias; Karoliny Bom; Camila B. Tromm; Thais F. Luciano; Scherolin O. Marques; Talita Tuon; Luciano A. Silva; Fábio Santos Lira; C. T. De Souza; Ricardo A. Pinho

It is well known that high-fat diets (HFDs) induce obesity and result in an increase in oxidative stress in adipose tissue, which leads to an impairment of fat mobilization by a downregulation of the lipases, such as hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL). On the other hand, exercise training leads to a reduction in adipose tissue and an improvement of antioxidant status and the lipolytic pathway. Our aim was to examine the influence of exercise and moderate intensity training on oxidative stress parameters and the relationship between the proteins involved in the lipolysis of animals subjected to a high-fat fed diet. Twenty-four mice were used and divided into 4 groups (n=6): standard diet (SD); standard diet plus exercise (SD+Ex); high-fat diet (HFD); and high-fat diet plus exercise (HFD+Ex). The animals received HFD for 90 days and submitted to a daily training protocol in swinging. The animals were euthanized 48 h after the last session of exercise. White adipose tissue epididymal fat was excised for the measurement of oxidative stress parameters and protein levels of lipolytic enzymes by Western blotting. The results show an increase in body weight after 90 days of HFD, and exercise training prevented great gain. In adipose tissue, lipid peroxidation and protein carbonylation increased after HFD and decreased significantly after exercise training. The protein level of CGI-58 was reduced, and FAS was increased in the HFD than in SD, whereas ATGL exhibited an increase (p<0.05) in HFD than in SD. The exercise plays a significant role in reducing oxidative damage, along with the regulation of proteins that are involved in the lipolysis of animals exposed to HFD.


Hormone and Metabolic Research | 2012

Reversion of steatosis by SREBP-1c antisense oligonucleotide did not improve hepatic insulin action in diet-induced obesity mice.

Marcelo F. Vitto; Gabrielle da Luz; Thais F. Luciano; Scherolin O. Marques; Daniela R. Souza; Ricardo A. Pinho; F. S. Lira; Dennys E. Cintra; C. T. De Souza

The literature has associated hepatic insulin action with NAFLD. In this sense, treatments to revert steatosis and improve hepatic insulin action become important. Our group has demonstrated that inhibition of Sterol Regulatory Element Binding Proteins-1c (SREBP-1c) reverses hepatic steatosis. However, insulin signals after NAFLD reversion require better investigation. Thus, in this study, we investigated if the reversal of NAFLD by SREBP-1c inhibitor results in improvement in the hepatic insulin signal in obesity mice. After installation/achievement of diet-induced obesity and insulin resistance, Swiss mice were divided into 3 groups: i) Lean, ii) D-IHS, diet-induced hepatic steatosis [no treatment with antisense oligonucleotide (ASO)], and iii) RD-IHS, reversion of diet-induced hepatic steatosis (treated with ASO). The mice were treated with ASO SREBP-1c as previously described by our group. After ASO treatment, one set of animals was anesthetized and used for in vivo test, and another mice set was anesthetized and used for histology and Western blot analysis. Reversion of diet-induced hepatic steatosis did not change blood glucose, glucose decay constant (k(ITT)), body weight, or serum insulin levels. In addition, results showed that the protocol did not improve insulin pathway signaling, as confirmed by the absence of changes in IR, IRS1, Akt and Foxo1 phosphorylation in hepatic tissue. In parallel, no alterations were observed in proinflammatory molecules. Thus, our results suggest that the inhibition of SREBP-1c reverts steatosis, but without improving insulin hepatic resistance.


Revista De Nutricao-brazilian Journal of Nutrition | 2012

Suplementação de ácidos graxos poli-insaturados ômega-3 reduz marcadores inflamatórios e melhora a ação da insulina em fígado de camundongos

Gabrielle da Luz; Sabrina da Silva; Scherolin O. Marques; Thais F. Luciano; Cláudio T. De Souza

OBJECTIVE: The aim of the present study was to assess the effects of omega-3 polyunsaturated fatty acid supplementation on insulin signaling and the proinflammatory pathway in the liver tissue of mice. METHODS: Swiss mice were divided into six groups given different dosages of fish oil containing omega-3 (1mg, 5mg, 10mg and 50mg) by gavage. The control group was given water. Fasting plasma glucose was measured on days 0 (no supplementation), 14 and 21 (after supplementation) to determine the dosage and timedependent effects of omega-3. Because the group n-3-21days (21 days of omega-3 supplementation) demonstrated lower blood glucose, this time interval was selected for molecular analysis. After an 8hour fast, liver tissue samples were taken from the control and n-3-21days groups, and western blot analyses were performed to assess insulin signaling and the proinflammatory pathway. RESULTS: The results showed that the dosage of 10mg leads to greater reduction in blood glucose at 14 and 21 days when compared with other dosages. Thus, this dosage was selected for molecular analysis. This dosage significantly decreased phosphorylation of cJun nterminal protein kinase and IkB kinase and protein levels of nuclear factor Kappalightchainenhancer of activated B cells. In parallel, increased insulin pathway signaling was observed, as confirmed by increases in insulin receptors, insulin receptor substrate 1 and protein kinase B phosphorylation. CONCLUSION: The present study suggests that omega-3 fatty acids improve insulin signaling by reducing inflammation. These results may be one of the explanations for low fasting glucose.

Collaboration


Dive into the Scherolin O. Marques's collaboration.

Top Co-Authors

Avatar

Cláudio T. De Souza

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Thais F. Luciano

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Ricardo A. Pinho

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Daniela R. Souza

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Eduardo R. Ropelle

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Marcelo F. Vitto

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

José Rodrigo Pauli

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Bruno Rodrigues

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Dennys E. Cintra

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Julia Engelmann

Universidade do Extremo Sul Catarinense

View shared research outputs
Researchain Logo
Decentralizing Knowledge