Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scot Mente is active.

Publication


Featured researches published by Scot Mente.


Journal of Medicinal Chemistry | 2009

Discovery, SAR, and Pharmacokinetics of a Novel 3-Hydroxyquinolin-2(1H)-one Series of Potent d-Amino Acid Oxidase (DAAO) Inhibitors†

Allen J. Duplantier; Stacey L. Becker; Michael John Bohanon; Kris A. Borzilleri; Boris A. Chrunyk; James T. Downs; Lain-Yen Hu; Ayman El-Kattan; Larry C. James; Shenping Liu; Jiemin Lu; Noha Maklad; Mahmoud N. Mansour; Scot Mente; Mary Piotrowski; Subas M. Sakya; Susan Sheehan; Stefanus J. Steyn; Christine A. Strick; Victoria A. Williams; Lei Zhang

3-Hydroxyquinolin-2(1H)-one (2) was discovered by high throughput screening in a functional assay to be a potent inhibitor of human DAAO, and its binding affinity was confirmed in a Biacore assay. Cocrystallization of 2 with the human DAAO enzyme defined the binding site and guided the design of new analogues. The SAR, pharmacokinetics, brain exposure, and effects on cerebellum D-serine are described. Subsequent evaluation against the rat DAAO enzyme revealed a divergent SAR versus the human enzyme and may explain the high exposures of drug necessary to achieve significant changes in rat or mouse cerebellum D-serine.


Bioorganic & Medicinal Chemistry Letters | 2009

Potent and cellularly active 4-aminoimidazole inhibitors of cyclin-dependent kinase 5/p25 for the treatment of Alzheimer's disease.

Christopher John Helal; Zhijun Kang; John C. Lucas; Thomas G. Gant; Michael K. Ahlijanian; Joel B. Schachter; Karl E.G. Richter; James M. Cook; Frank S. Menniti; Kristin Kelly; Scot Mente; Jay Pandit; Natalie Hosea

Utilizing structure-based drug design, a 4-aminoimidazole heterocyclic core was synthesized as a replacement for a 2-aminothiazole due to potential metabolically mediated toxicity. The synthetic route utilized allowed for ready synthesis of 1-substituted-4-aminoimidazoles. SAR exploration resulted in the identification of a novel cis-substituted cyclobutyl group that gave improved enzyme and cellular potency against cdk5/p25 with up to 30-fold selectivity over cdk2/cyclin E.


Expert Opinion on Drug Metabolism & Toxicology | 2012

Strategies to minimize CNS toxicity: in vitro high-throughput assays and computational modeling

Travis T. Wager; Jennifer Liras; Scot Mente; Patrick Trapa

Introduction: Healthy functioning of the brain is dependent on the ability of the blood–brain barrier (BBB) and other central nervous system (CNS) barriers to protect the neurocompartments from potential disruptive and damaging xenobiotic agents. In vitro high-throughput (HT) screens and computational models that assess a compounds ability to pass through or disrupt the BBB have become important tools in the identification of new well-tolerated peripheral drugs and safer chemical products such as pesticides. Leveraging these HT in vitro assays and computational BBB tools together with the current understanding of brain penetration may enable the drug discovery community to minimize access of drug candidates into the CNS compartment. Areas covered: This article reviews aspects of the most recent in vitro and computational approaches designed to provide an early assessment of a compounds ability to access the neurocompartment. This article also provides insight into using these tools to identify compounds that have restricted access to the neurocompartment. Expert opinion: The development of safer peripheral-acting medicines and chemical products can be achieved through prospective design and early assessment with HT assays of the BBB in conjunction with computational models. Exclusion or significantly reduced access of a compound to the neurocompartment will increase the odds of identifying a compound with reduced CNS-related adverse drug reactions. A holistic approach to compound design and evaluation that incorporates prospective design principles (e.g., optimization of physicochemical properties), leverages HT in vitro assays and integrates the use of BBB computational models may yield the ‘best-in-class’ peripherally acting product.


ACS Medicinal Chemistry Letters | 2012

Measurement of Atropisomer Racemization Kinetics Using Segmented Flow Technology

Jennifer Elizabeth Davoren; Mark W. Bundesmann; Qi T. Yan; Elizabeth M. Collantes; Scot Mente; Deane M. Nason; David L. Gray

When stable atropisomers are encountered by drug discovery teams, they can have important implications due to potential differences in their biological activity, pharmacokinetics, and toxicity. Knowledge of an atropisomers activation parameters for interconversion is required to facilitate informed decisions on how to proceed. Herein, we communicate the development of a new method for the rapid measurement of atropisomer racemization kinetics utilizing segmented flow technology. This method leverages the speed, accuracy, low sample requirement, safety, and semiautomated nature of flow instrumentation to facilitate the acquisition of kinetics data required for experimentally probing atropisomer activation parameters. Measured kinetics data obtained for the atropo isomerization of AMPA antagonist CP-465021 using segmented flow and traditional thermal methods were compared to validate the method.


Bioorganic & Medicinal Chemistry Letters | 2010

A novel series of [3.2.1] azabicyclic biaryl ethers as α3β4 and α6/4β4 nicotinic receptor agonists

John A. Lowe; Shari L. DeNinno; Jotham Wadsworth Coe; Lei Zhang; Scot Mente; Raymond S. Hurst; Robert J. Mather; Karen M. Ward; Alka Shrikhande; Hans Rollema; David E. Johnson; Weldon Horner; Roxanne Gorczyca; F. David Tingley; Rouba Kozak; Mark J. Majchrzak; Theresa Tritto; Jen Sadlier; Chris L. Shaffer; Brenda R. Ellerbrock; Sarah Osgood; Mary Macdougall; Laura McDowell

We report the synthesis of a series of [3.2.1]azabicyclic biaryl ethers as selective agonists of alpha3- and alpha6-containing nicotinic receptors. In particular, compound 17a from this series is a potent alpha3beta4 and alpha6/4beta4 receptor agonist in terms of both binding and functional activity. Compound 17a also shows potent in vivo activity in CNS-mediated animal models that are sensitive to antipsychotic drugs. Compound 17a may thus be a useful tool for studying the role of alpha3beta4 and alpha6/4beta4 nicotinic receptors in CNS pharmacology.


Annual Reports in Medicinal Chemistry | 2001

Chapter 25. ADME by computer

Matthew D. Wessel; Scot Mente

Publisher Summary This chapter describes the analysis of absorption, distribution, metabolism, and elimination/excretion (ADME) characteristics of pharmaceuticals by computers. Human intestinal absorption is a direct measure of the ability of a drug to enter the human biological system. Using the logit transform of the absorption values, a model using the MolSurf parameters gave a reasonable correlation for 20 drug compounds. The MolSurf descriptors utilized quantum chemical calculations and an analysis of the molecular valence region of molecules. A simpler approach that employs single conformer polar surface area (PSA) and AlogP98 with scatterplots was capable of classifying compounds into either well or poorly absorbed classes. The well-absorbed data set contained 199 compounds and the poorly absorbed data set had 35 compounds. The VolSurf program takes 3-dimensional molecular fields and converts them into meaningful descriptors. These parameters can be used to build models for Caco-2 and MDCK permeability. A unique molecular hashkey method is proposed. In this context, a molecular hashkey is a real-valued vector that tries to describe the surface properties of a small molecule. Using K nearest neighbor methodology, a model for predicting logP performs well for 862 compounds.


Bioorganic & Medicinal Chemistry Letters | 2015

Dopamine D1 receptor-agonist interactions: A mutagenesis and homology modeling study

Scot Mente; Edward Guilmette; Michelle A. Salafia; David L. Gray

The dopamine D1 receptor is a G protein-coupled receptor that regulates intracellular signaling via agonist activation. Although the number of solved GPCR X-ray structures has been steadily increasing, still no structure of the D1 receptor exists. We have used site-directed mutagenesis of 12 orthosteric vicinity residues of possible importance to G protein-coupled activation to examine the function of prototypical orthosteric D1 agonists and partial agonists. We find that residues from four different regions of the D1 receptor make significant contributions to agonist function. All compounds studied, which are catechol-amines, are found to interact with the previously identified residues: the conserved D103(3.32), as well as the trans-membrane V serine residues. Additional key interactions are found for trans-membrane VI residues F288(6.51), F289(6.52) and N292(6.55), as well as the extra-cellular loop residue L190(ECL2). Molecular dynamics simulations of a D1 homology model have been used to help put the ligand-residue interactions into context. Finally, we considered the rescaling of fold-shift data as a method to account for the change in the size of the mutated side-chain and found that this rescaling helps to relate the calculated ligand-residue energies with observed experimental fold-shifts.


ACS Chemical Neuroscience | 2014

Casein Kinase 1δ/ε Inhibitor PF-5006739 Attenuates Opioid Drug-Seeking Behavior

Travis T. Wager; Ramalakshmi Y. Chandrasekaran; Jenifer Bradley; David M. Rubitski; Helen Berke; Scot Mente; Todd William Butler; Angela C. Doran; Cheng Chang; Katherine Fisher; John D. Knafels; Shenping Liu; Jeff Ohren; Michael Marconi; George J. DeMarco; Blossom Sneed; Kevin Walton; David Horton; Amy Rosado; Andy Mead

Casein kinase 1 delta (CK1δ) and casein kinase 1 epsilon (CK1ε) inhibitors are potential therapeutic agents for a range of psychiatric disorders. The feasibility of developing a CNS kinase inhibitor has been limited by an inability to identify safe brain-penetrant compounds with high kinome selectivity. Guided by structure-based drug design, potent and selective CK1δ/ε inhibitors have now been identified that address this gap, through the design and synthesis of novel 4-[4-(4-fluorophenyl)-1-(piperidin-4-yl)-1H-imidazol-5-yl]pyrimidin-2-amine derivatives. PF-5006739 (6) possesses a desirable profile, with low nanomolar in vitro potency for CK1δ/ε (IC50 = 3.9 and 17.0 nM, respectively) and high kinome selectivity. In vivo, 6 demonstrated robust centrally mediated circadian rhythm phase-delaying effects in both nocturnal and diurnal animal models. Further, 6 dose-dependently attenuated opioid drug-seeking behavior in a rodent operant reinstatement model in animals trained to self-administer fentanyl. Collectively, our data supports further development of 6 as a promising candidate to test the hypothesis of CK1δ/ε inhibition in treating multiple indications in the clinic.


Journal of Medicinal Chemistry | 2013

Ligand-protein interactions of selective casein kinase 1δ inhibitors.

Scot Mente; Eric P. Arnold; Todd William Butler; Subramanyam Chakrapani; Ramalakshmi Y. Chandrasekaran; Kevin Cherry; Ken Dirico; Angela C. Doran; Katherine Fisher; Paul Galatsis; Michael V. Green; Matthew Merrill Hayward; John M. Humphrey; John D. Knafels; Jianke Li; Shenping Liu; Michael Marconi; Scott McDonald; Jeff Ohren; Vanessa Paradis; Blossom Sneed; Kevin Walton; Travis T. Wager

Casein kinase 1δ (CK1δ) and 1ε (CK1ε) are believed to be necessary enzymes for the regulation of circadian rhythms in all mammals. On the basis of our previously published work demonstrating a CK1ε-preferring compound to be an ineffective circadian clock modulator, we have synthesized a series of pyrazole-substitued pyridine inhibitors, selective for the CK1δ isoform. Additionally, using structure-based drug design, we have been able to exploit differences in the hinge region between CK1δ and p38 to find selective inhibitors that have minimal p38 activity. The SAR, brain exposure, and the effect of these inhibitors on mouse circadian rhythms are described. The in vivo evaluation of these inhibitors demonstrates that selective inhibition of CK1δ at sufficient central exposure levels is capable of modulating circadian rhythms.


Journal of Medicinal Chemistry | 2017

Application of Structure-Based Design and Parallel Chemistry to Identify a Potent, Selective, and Brain Penetrant Phosphodiesterase 2A Inhibitor.

Christopher John Helal; Eric P. Arnold; Tracey Boyden; Cheng Chang; Thomas A. Chappie; Kimberly F. Fennell; Michael D. Forman; Mihály Hajós; John F. Harms; William E. Hoffman; John M. Humphrey; Zhijun Kang; Robin J. Kleiman; Bethany L. Kormos; Che-Wah Lee; Jiemin Lu; Noha Maklad; Laura McDowell; Scot Mente; Rebecca E. O’Connor; Jayvardhan Pandit; Mary Piotrowski; Anne W. Schmidt; Christopher J. Schmidt; Hirokazu Ueno; Patrick Robert Verhoest; Edward X. Yang

Phosphodiesterase 2A (PDE2A) inhibitors have been reported to demonstrate in vivo activity in preclinical models of cognition. To more fully explore the biology of PDE2A inhibition, we sought to identify potent PDE2A inhibitors with improved brain penetration as compared to current literature compounds. Applying estimated human dose calculations while simultaneously leveraging synthetically enabled chemistry and structure-based drug design has resulted in a highly potent, selective, brain penetrant compound 71 (PF-05085727) that effects in vivo biochemical changes commensurate with PDE2A inhibition along with behavioral and electrophysiological reversal of the effects of NMDA antagonists in rodents. This data supports the ability of PDE2A inhibitors to potentiate NMDA signaling and their further development for clinical cognition indications.

Collaboration


Dive into the Scot Mente's collaboration.

Researchain Logo
Decentralizing Knowledge