Scot Middleton
Amgen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Scot Middleton.
Journal of Bone and Mineral Research | 2005
Marina Stolina; Stephen Adamu; Mike Ominsky; Denise Dwyer; Frank Asuncion; Zhaopo Geng; Scot Middleton; Heather Brown; Jim Pretorius; Georg Schett; Brad Bolon; Ulrich Feige; Debra Zack; Paul J. Kostenuik
RANKL is an essential mediator of bone erosions, but the role of RANKL in systemic bone loss had not been studied in arthritis. RANKL protein was increased in rat joint extracts and serum at the earliest stages of arthritis. Osteoprotegerin (OPG) treatment reversed local and systemic bone loss, suggesting that RANKL is both a marker and mediator of bone loss in arthritis.
Arthritis Research & Therapy | 2009
Marina Stolina; Georg Schett; Denise Dwyer; Steven Vonderfecht; Scot Middleton; Diane Duryea; Efrain Pacheco; Gwyneth Van; Brad Bolon; Ulrich Feige; Debra Zack; Paul J. Kostenuik
IntroductionRat adjuvant-induced arthritis (AIA) and collagen-induced arthritis (CIA) feature bone loss and systemic increases in TNFα, IL-1β, and receptor activator of NF-κB ligand (RANKL). Anti-IL-1 or anti-TNFα therapies consistently reduce inflammation in these models, but systemic bone loss often persists. RANKL inhibition consistently prevents bone loss in both models without reducing joint inflammation. Effects of these therapies on systemic markers of bone turnover and inflammation have not been directly compared.MethodsLewis rats with established AIA or CIA were treated for 10 days (from day 4 post onset) with either PBS (Veh), TNFα inhibitor (pegsunercept), IL-1 inhibitor (anakinra), or RANKL inhibitor (osteoprotegerin (OPG)-Fc). Local inflammation was evaluated by monitoring hind paw swelling. Bone mineral density (BMD) of paws and lumbar vertebrae was assessed by dual X-ray absorptiometry. Markers and mediators of bone resorption (RANKL, tartrate-resistant acid phosphatase 5b (TRACP 5B)) and inflammation (prostaglandin E2 (PGE2), acute-phase protein alpha-1-acid glycoprotein (α1AGP), multiple cytokines) were measured in serum (day 14 post onset).ResultsArthritis progression significantly increased paw swelling and ankle and vertebral BMD loss. Anti-TNFα reduced paw swelling in both models, and reduced ankle BMD loss in AIA rats. Anti-IL-1 decreased paw swelling in CIA rats, and reduced ankle BMD loss in both models. Anti-TNFα and anti-IL-1 failed to prevent vertebral BMD loss in either model. OPG-Fc reduced BMD loss in ankles and vertebrae in both models, but had no effect on paw swelling. Serum RANKL was elevated in AIA-Veh and CIA-Veh rats. While antiTNFα and anti-IL-1 partially normalized serum RANKL without any changes in serum TRACP 5B, OPG-Fc treatment reduced serum TRACP 5B by over 90% in both CIA and AIA rats. CIA-Veh and AIA-Veh rats had increased serum α1AGP, IL-1β, IL-8 and chemokine (C-C motif) ligand 2 (CCL2), and AIA-Veh rats also had significantly greater serum PGE2, TNFα and IL-17. Anti-TNFα reduced systemic α1AGP, CCL2 and PGE2 in AIA rats, while anti-IL-1 decreased systemic α1AGP, IL-8 and PGE2. In contrast, RANKL inhibition by OPG-Fc did not lessen systemic cytokine levels in either model.ConclusionsAnti-TNFα or anti-IL-1 therapy inhibited parameters of local and systemic inflammation, and partially reduced local but not systemic bone loss in AIA and CIA rats. RANKL inhibition prevented local and systemic bone loss without significantly inhibiting local or systemic inflammatory parameters.
Biochemical Pharmacology | 1999
Clifford D. Wright; Andrew M. Havill; Scot Middleton; Mohammed A. Kashem; David Dripps; William M Abraham; David S Thomson; Laurence E Burgess
Emerging evidence suggests that mast cell tryptase is a therapeutic target for the treatment of asthma. The effects of this serine protease are associated with both pathophysiologic pulmonary responses and pathologic changes of the asthmatic airway. In this study, the tryptase inhibitor 1,5-bis-[4-[(3-carbamimidoyl-benzenesulfonylamino)-methyl]-p henoxy]-pentane (AMG-126737) was evaluated for its pharmacologic effects against allergen-induced airway responses. AMG-126737 is a potent inhibitor of human lung mast cell tryptase (Ki = 90 nM), with greater than 10- to 200-fold selectivity versus other serine proteases. Intratracheal administration of AMG-126737 inhibited the development of airway hyperresponsiveness in allergen-challenged guinea pigs with an ED50 of 0.015 mg/kg. In addition, the compound exhibited oral activity in the guinea pig model. The in vivo activity of AMG-126737 was confirmed in a sheep model of allergen-induced airway responses, where the compound inhibited early and late phase bronchoconstriction responses and the development of airway hyperresponsiveness. These results support the proposed role of tryptase in the pathology of asthma and suggest that AMG-126737 has potential therapeutic utility in this pulmonary disorder.
Journal of Clinical Immunology | 2009
Marina Stolina; Brad Bolon; Scot Middleton; Denise Dwyer; Heather Brown; Diane Duryea; Li Zhu; Alison Rohner; James Pretorius; Paul J. Kostenuik; Ulrich Feige; Debra Zack
IntroductionRats with adjuvant-induced arthritis (AIA) were necropsied on 14 occasions during preclinical, acute clinical and chronic clinical stages of AIA progression to characterize local (joint protein extracts) and systemic (serum) levels of mediators regulating inflammation and bone erosion in conjunction with lymphoid tissue-specific leukocyte kinetics.ResultsSystemic increases in alpha1 acid glycoprotein, tumor necrosis factor-α (TNFα), interleukin (IL)-17, transforming growth factor beta (TGFβ), and chemokine (C–C motif) ligand 2 (CCL2) together with local IL-1α/β and TGFβ enrichment and local lymphoid hyperplasia preceded the onset of clinical disease and joint damage. Systemic upregulation of TNFα, IL-6, IL-17, TGFβ, IL-18, CCL2, receptor activator of nuclear factor-κβ ligand (RANKL), and prostaglandin E2 during acute and/or chronic AIA coincided with systemic leukocytosis and CD4+ T cell increase in blood and spleen. In contrast, progression of joint erosions during clinical AIA was associated with intra-articular increases in IL-1α/β, IL-6, RANKL, IL-17, TGFβ, CCL2, and KC/GRO and also a dramatic decline in osteoprotegerin.ConclusionThese data indicate that systemic and local events in inflammatory arthritis are discrete processes, driven by multiple cellular and humoral mediators with distinct kinetic profiles.
BioMed Research International | 2011
Brad Bolon; Marina Stolina; Caroline King; Scot Middleton; Jill Gasser; Debra Zack; Ulrich Feige
Rodent models of immune-mediated arthritis (RMIA) are the conventional approach to evaluating mechanisms of inflammatory joint disease and the comparative efficacy of antiarthritic agents. Rat adjuvant-induced (AIA), collagen-induced (CIA), and streptococcal cell wall-induced (SCW) arthritides are preferred models of the joint pathology that occurs in human rheumatoid arthritis (RA). Lesions of AIA are most severe and consistent; structural and immunological changes of CIA best resemble RA. Lesion extent and severity in RMIA depends on experimental methodology (inciting agent, adjuvant, etc.) and individual physiologic parameters (age, genetics, hormonal status, etc.). The effectiveness of antiarthritic molecules varies with the agent, therapeutic regimen, and choice of RMIA. All RMIA are driven by overactivity of proinflammatory pathways, but the dominant molecules differ among the models. Hence, as with the human clinical experience, the efficacy of various antiarthritic molecules differs among RMIA, especially when the agent is a specific cytokine inhibitor.
Journal of Medicinal Chemistry | 2008
Brad Herberich; Guo-Qiang Cao; Partha P. Chakrabarti; James Richard Falsey; Liping H. Pettus; Robert M. Rzasa; Anthony B. Reed; Andreas Reichelt; Kelvin Sham; Maya C. Thaman; Ryan Wurz; Shimin Xu; Dawei Zhang; Faye Hsieh; Matthew R. Lee; Rashid Syed; Vivian Li; David Grosfeld; Matthew Plant; Bradley Henkle; Lisa Sherman; Scot Middleton; Lu Min Wong; Andrew Tasker
Investigations into the structure-activity relationships (SAR) of a series of phthalazine-based inhibitors of p38 are described. These efforts originated from quinazoline 1 and through rational design led to the development of a series of orally bioavailable, potent, and selective inhibitors. Kinase selectivity was achieved by exploiting a collection of interactions with p38alpha including close contact to Ala157, occupation of the hydrophobic gatekeeper pocket, and a residue flip with Gly110. Substitutions on the phthalazine influenced the pharmacokinetic properties, of which compound 16 displayed the most desirable profile. Oral dosing (0.03 mg/kg) of 16 in rats 1 h prior to LPS challenge gave a >50% decrease in TNFalpha production.
ACS Medicinal Chemistry Letters | 2011
Victor J. Cee; Mike Frohn; Brian A. Lanman; Jennifer E. Golden; Kristine M. Muller; Susana C. Neira; Alex Pickrell; Heather A. Arnett; Janet Buys; Anu Gore; Mike Fiorino; Michelle Horner; Andrea Itano; Matt R. Lee; Michele McElvain; Scot Middleton; Michael Schrag; Dalia Rivenzon-Segal; Hugo M. Vargas; Han Xu; Yang Xu; Xuxia Zhang; Jerry Siu; Min Wong; Roland W. Bürli
The optimization of a series of thiazolopyridine S1P1 agonists with limited activity at the S1P3 receptor is reported. These efforts resulted in the discovery of 1-(3-fluoro-4-(5-(1-phenylcyclopropyl)thiazolo-[5,4-b]pyridin-2-yl)benzyl)azetidine-3-carboxylic acid (5d, AMG 369), a potent dual S1P1/S1P5 agonist with limited activity at S1P3 and no activity at S1P2/S1P4. Dosed orally at 0.1 mg/kg, 5d is shown to reduce blood lymphocyte counts 24 h postdose and delay the onset and reduce the severity of experimental autoimmune encephalomyelitis in rat.
Life Sciences | 1998
Victor E. Barrios; Scot Middleton; Mohammed A. Kashem; Andy M. Havill; Christopher F. Toombs; Clifford D. Wright
Hyperresponsiveness of airway smooth muscle to allergens and environmental factors has long been associated with the pathophysiology of asthma. Tryptase, a serine protease of lung mast cells, has been implicated as one of the mediators involved in the induction of hyperresponsiveness. As a consequence, tryptase inhibitors have become the subject of study as potential novel therapeutic agents for asthma. Secretory leukocyte protease inhibitor (SLPI) is a naturally occurring protein of human airways which exhibits anti-tryptase activity. To assess the potential therapeutic utility of SLPI in asthma, its effects were evaluated using in vitro and ex vivo models of airway hyperresponsiveness and compared with the effects of the small molecule tryptase inhibitor APC-366. Our results demonstrate that SLPI inhibits tryptase-mediated hyperresponsiveness in vitro and attenuates the hyperresponsiveness observed in airway smooth muscle from antigen-sensitized animals subjected to antigen exposure. The small molecule tryptase inhibitor APC-366 has a similar inhibitory effect. Thus, tryptase appears to be a significant contributor to the development of hyperresponsiveness in these models. To the extent that tryptase contributes to the development and progression of asthma, SLPI may possess therapeutic potential in this disease setting.
ACS Medicinal Chemistry Letters | 2011
Ashis Saha; Xiang Yu; Jian Lin; Mercedes Lobera; Anurag Sharadendu; Srinivas Chereku; Nili Schutz; Dalia Segal; Yael Marantz; Dilara McCauley; Scot Middleton; Jerry Siu; Roland W. Bürli; Janet Buys; Michelle Horner; Kevin Salyers; Michael Schrag; Hugo M. Vargas; Yang Xu; Michele McElvain; Han Xu
We have discovered novel benzofuran-based S1P1 agonists with excellent in vitro potency and selectivity. 1-((4-(5-Benzylbenzofuran-2-yl)-3-fluorophenyl)methyl) azetidine-3-carboxylic acid (18) is a potent S1P1 agonist with >1000× selectivity over S1P3. It demonstrated a good in vitro ADME profile and excellent oral bioavailability across species. Dosed orally at 0.3 mg/kg, 18 significantly reduced blood lymphocyte counts 24 h postdose and demonstrated efficacy in a mouse EAE model of relapsing MS.
Biomarkers | 2008
Marina Stolina; Brad Bolon; Denise Dwyer; Scot Middleton; Diane Duryea; Paul J. Kostenuik; Ulrich Feige; Debra Zack
Rats with collagen-induced arthritis (CIA) were necropsied on 14 occasions from 4 days after induction to 27 days after disease onset to evaluate the kinetics of local (joint protein extracts) and systemic (serum) levels of inflammatory and pro-erosive factors. Systemic increases in α1 acid glycoprotein and KC/GRO together with systemic and local enrichment of interleukin (IL)-1β, IL-6, CCL2, transforming growth factor (TGF)-β and elevated IL-1α and IL-18 in joint extracts preceded the onset of clinical disease. Systemic upregulation of IL-1β, IL-6, TGF-β CCL2, RANKL and prostaglandin E2 (PGE2) during acute and/or chronic CIA coincided with systemic leukocytosis and a CD4+ T-cell increase in blood and spleen. In contrast, progression of joint erosions during clinical CIA was associated with intra-articular increases in IL-1α/β, IL-6, IL-18, CCL2, KC/GRO and RANKL, and a dramatic decline in osteoprotegerin (OPG). These data indicate that systemic and local events in inflammatory arthritis can be discrete processes, driven by multiple cellular and humoral mediators with distinct temporospatial profiles.