Scott A. Seaman
University of Virginia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Scott A. Seaman.
PLOS ONE | 2013
Thomas A. Mendel; Erin B. D. Clabough; David S. Kao; Tatiana N. Demidova-Rice; Jennifer T. Durham; Brendan C. Zotter; Scott A. Seaman; Stephen M. Cronk; Elizabeth Rakoczy; Adam J. Katz; Ira M. Herman; Shayn M. Peirce; Paul Andrew Yates
Background Retinal vasculopathies, including diabetic retinopathy (DR), threaten the vision of over 100 million people. Retinal pericytes are critical for microvascular control, supporting retinal endothelial cells via direct contact and paracrine mechanisms. With pericyte death or loss, endothelial dysfunction ensues, resulting in hypoxic insult, pathologic angiogenesis, and ultimately blindness. Adipose-derived stem cells (ASCs) differentiate into pericytes, suggesting they may be useful as a protective and regenerative cellular therapy for retinal vascular disease. In this study, we examine the ability of ASCs to differentiate into pericytes that can stabilize retinal vessels in multiple pre-clinical models of retinal vasculopathy. Methodology/Principal Findings We found that ASCs express pericyte-specific markers in vitro. When injected intravitreally into the murine eye subjected to oxygen-induced retinopathy (OIR), ASCs were capable of migrating to and integrating with the retinal vasculature. Integrated ASCs maintained marker expression and pericyte-like morphology in vivo for at least 2 months. ASCs injected after OIR vessel destabilization and ablation enhanced vessel regrowth (16% reduction in avascular area). ASCs injected intravitreally before OIR vessel destabilization prevented retinal capillary dropout (53% reduction). Treatment of ASCs with transforming growth factor beta (TGF-β1) enhanced hASC pericyte function, in a manner similar to native retinal pericytes, with increased marker expression of smooth muscle actin, cellular contractility, endothelial stabilization, and microvascular protection in OIR. Finally, injected ASCs prevented capillary loss in the diabetic retinopathic Akimba mouse (79% reduction 2 months after injection). Conclusions/Significance ASC-derived pericytes can integrate with retinal vasculature, adopting both pericyte morphology and marker expression, and provide functional vascular protection in multiple murine models of retinal vasculopathy. The pericyte phenotype demonstrated by ASCs is enhanced with TGF-β1 treatment, as seen with native retinal pericytes. ASCs may represent an innovative cellular therapy for protection against and repair of DR and other retinal vascular diseases.
ACS Sensors | 2016
Christopher A. DeRosa; Scott A. Seaman; Alexander S. Mathew; Catherine M. Gorick; Ziyi Fan; J. N. Demas; Shayn M. Peirce; Cassandra L. Fraser
Difluoroboron β-diketonate poly(lactic acid) materials exhibit both fluorescence (F) and oxygen sensitive room-temperature phosphorescence (RTP). Introduction of halide heavy atoms (Br and I) is an effective strategy to control the oxygen sensitivity in these materials. A series of naphthyl-phenyl (nbm) dye derivatives with hydrogen, bromide and iodide substituents were prepared for comparison. As nanoparticles, the hydrogen derivative was hypersensitive to oxygen (0-0.3%), while the bromide analogue was suited for hypoxia detection (0-3% O2). The iodo derivative, BF2nbm(I)PLA, showed excellent F to RTP peak separation and an 0-100% oxygen sensitivity range unprecedented for metal-free RTP emitting materials. Due to the dual emission and unconventionally long RTP lifetimes of these O2 sensing materials, a portable, cost-effective camera was used to quantify oxygen levels via lifetime and red/green/blue (RGB) ratiometry. The hypersensitive H dye was well matched to lifetime detection, simultaneous lifetime and ratiometric imaging was possible for the bromide analogue, whereas the iodide material, with intense RTP emission and a shorter lifetime, was suited for RGB ratiometry. To demonstrate the prospects of this camera/material design combination for bioimaging, iodide boron dye-PLA nanoparticles were applied to a murine wound model to detect oxygen levels. Surprisingly, wound oxygen imaging was achieved without covering (i.e. without isolating from ambient conditions, air). Additionally, would healing was monitored via wound size reduction and associated oxygen recovery, from hypoxic to normoxic. These single-component materials provide a simple tunable platform for biological oxygen sensing that can be deployed to spatially resolve oxygen in a variety of environments.
American Journal of Physiology-cell Physiology | 2011
Peter J. Amos; Carolyn L. Mulvey; Scott A. Seaman; Joseph Walpole; Katherine E. Degen; Hulan Shang; Adam J. Katz; Shayn M. Peirce
Previous studies have shown that exposure to a hypoxic in vitro environment increases the secretion of pro-angiogenic growth factors by human adipose-derived stromal cells (hASCs) [Cao Y, et al., Biochem Biophys Res Commun 332: 370-379, 2005; Kokai LE, et al., Plast Reconstr Surg 116: 1453-1460, 2005; Park BS, et al., Biomed Res (Tokyo) 31: 27-34, 2010; Rasmussen JG, et al., Cytotherapy 13: 318-328, 2010; Rehman J, et al., Circulation 109: 1292-1298, 2004]. Previously, it has been demonstrated that hASCs can differentiate into pericytes and promote microvascular stability and maintenance during angiogenesis in vivo (Amos PJ, et al., Stem Cells 26: 2682-2690, 2008; Traktuev DO, et al., Circ Res 102: 77-85, 2008). In this study, we tested the hypotheses that angiogenic induction can be increased and pericyte differentiation decreased by pretreatment of hASCs with hypoxic culture and that hASCs are similar to human bone marrow-derived stromal cells (hBMSCs) in these regards. Our data confirms previous studies showing that hASCs: 1) secrete pro-angiogenic proteins, which are upregulated following culture in hypoxia, and 2) migrate up gradients of PDGF-BB in vitro, while showing for the first time that a rat mesenteric model of angiogenesis induced by 48/80 increases the propensity of both hASCs and hBMSCs to assume perivascular phenotypes following injection. Moreover, culture of both cell types in hypoxia before injection results in a biphasic vascular length density response in this model of inflammation-induced angiogenesis. The effects of hypoxia and inflammation on the phenotype of adult progenitor cells impacts both the therapeutic and the basic science applications of the cell types, as hypoxia and inflammation are common features of natural and pathological vascular compartments in vivo.
Molecular metabolism | 2015
Samantha E. Adamson; Akshaya K. Meher; Yu-Hsin Chiu; Joanna K. Sandilos; Nathaniel P. Oberholtzer; Natalie N. Walker; Stefan R. Hargett; Scott A. Seaman; Shayn M. Peirce-Cottler; Brant E. Isakson; Coleen A. McNamara; Susanna R. Keller; Thurl E. Harris; Douglas A. Bayliss; Norbert Leitinger
Objective Defective glucose uptake in adipocytes leads to impaired metabolic homeostasis and insulin resistance, hallmarks of type 2 diabetes. Extracellular ATP-derived nucleotides and nucleosides are important regulators of adipocyte function, but the pathway for controlled ATP release from adipocytes is unknown. Here, we investigated whether Pannexin 1 (Panx1) channels control ATP release from adipocytes and contribute to metabolic homeostasis. Methods We assessed Panx1 functionality in cultured 3T3-L1 adipocytes and in adipocytes isolated from murine white adipose tissue by measuring ATP release in response to known activators of Panx1 channels. Glucose uptake in cultured 3T3-L1 adipocytes was measured in the presence of Panx1 pharmacologic inhibitors and in adipocytes isolated from white adipose tissue from wildtype (WT) or adipocyte-specific Panx1 knockout (AdipPanx1 KO) mice generated in our laboratory. We performed in vivo glucose uptake studies in chow fed WT and AdipPanx1 KO mice and assessed insulin resistance in WT and AdipPanx1 KO mice fed a high fat diet for 12 weeks. Panx1 channel function was assessed in response to insulin by performing electrophysiologic recordings in a heterologous expression system. Finally, we measured Panx1 mRNA in human visceral adipose tissue samples by qRT-PCR and compared expression levels with glucose levels and HOMA-IR measurements in patients. Results Our data show that adipocytes express functional Pannexin 1 (Panx1) channels that can be activated to release ATP. Pharmacologic inhibition or selective genetic deletion of Panx1 from adipocytes decreased insulin-induced glucose uptake in vitro and in vivo and exacerbated diet-induced insulin resistance in mice. Further, we identify insulin as a novel activator of Panx1 channels. In obese humans Panx1 expression in adipose tissue is increased and correlates with the degree of insulin resistance. Conclusions We show that Panx1 channel activity regulates insulin-stimulated glucose uptake in adipocytes and thus contributes to control of metabolic homeostasis.
Microcirculation | 2016
Scott A. Seaman; Yiqi Cao; Chris A. Campbell; Shayn M. Peirce
During autologous flap transplantation for reconstructive surgeries, plastic surgeons use a surgical pre‐treatment strategy called “flap delay,” which entails ligating a feeding artery into an adipose tissue flap 10–14 days prior to transfer. It is believed that this blood flow alteration leads to vascular remodeling in the flap, resulting in better flap survival following transfer; however, the structural changes in the microvascular network are poorly understood. Here, we evaluate microvascular adaptations within adipose tissue in a murine model of flap delay.
Aesthetic Surgery Journal | 2016
Scott A. Seaman; Shruti C. Tannan; Yiqi Cao; Shayn M. Peirce; Thomas J. Gampper
Cryolipolysis is a noninvasive technique for the reduction of subcutaneous adipose tissue by controlled, localized cooling, causing adipocyte apoptosis, reportedly without affecting surrounding tissue. Although cryolipolysis has a low incidence of adverse side effects 33 cases of paradoxical adipose hyperplasia (PAH) have been reported and the precise pathogenesis of PAH is poorly understood. This present case study of PAH aims to characterize the pathological changes in the adipose tissue of PAH on a cellular level by using multiple different assays [hematoxy lin and eosin staining, LIVE/DEAD staining, BODIPY(®) 558/568 C12 (4,4-Difluoro-5-(2-Thienyl)-4-Bora-3a,4a-Diaza-s-Indacene-3-dodecanoic acid) staining]. to identify the underlying mechanism of PAH and reduce the prevalence of PAH in the future. Tissue with PAH had fewer viable cells, significantly decreased quantities of interstitial cells (p = 0.04), and fewer vessels per adipose tissue area when compared to the control tissue. Adipocytes from the PAH tissue were on average slightly smaller than the control adipocytes. Adipocytes of PAH tissue had irregularly contoured edges when compared to the smooth, round edges of the control tissue. These findings from a neutral third party are contrary to prior reports from the inventors of this technique regarding effects of cryolipolysis on both the microvasculature and interstitial cells in adipose tissue. Our use of different assays to compare cryolipolysis-treated PAH tissue with untreated adipose tissue in the same patient showed adipose tissue that developed PAH was hypocellular and hypovascular. Contrary to prior reports from the inventors, cryolipolysis may cause vessel loss, which could lead to ischemia and/or hypoxia that further contributes to adipocyte death. LEVEL OF EVIDENCE 5: Risk.
Plastic and Reconstructive Surgery | 2015
Scott A. Seaman; Shruti C. Tannan; Yiqi Cao; Shayn M. Peirce; Kant Y. Lin
Background: Autologous fat graft retention is unpredictable, and mechanisms of optimization are poorly understood. Attempts at improving retention use collagenase experimentally and clinically to isolate the stromal vascular fraction to “enhance” fat grafts. However, no standardized duration for collagenase digestion or time following fat graft harvest has been established. This study investigates the effect of (1) time after fat graft harvest and (2) collagenase digestion time on interstitial cell and adipocyte viability in murine fat and human lipoaspirate. Methods: Murine fat and human lipoaspirate were incubated ex vivo after harvest at room temperature for 120 minutes. Additional groups were incubated with collagenase for increasing 5-minute intervals from 30 to 60 minutes. Samples from each group were stained with BODIPY to quantify intact adipocytes and the LIVE/DEAD kit to quantify interstitial cell viability. Results: With increased time after harvest, the number of intact adipocytes in murine fat and human lipoaspirate remained unchanged. Human interstitial cells were resistant to the effect of increased time ex vivo, whereas murine interstitial cells decreased in viability. In both populations, increased collagenase digestion time significantly decreased the number of viable adipocytes (murine, p ⩽ 0.001; human, p ⩽ 0.001) and interstitial cells (murine, p ⩽ 0.001; human, p ⩽ 0.001). Conclusions: Human and murine adipocytes and human interstitial cells appear resistant to deleterious effects of increasing time following harvest. However, murine interstitial cells are sensitive to increased time and prolonged collagenase digestion. These studies highlight the complex cellular components of fat grafts and how they respond differentially to time and collagenase digestion.
Purinergic Signalling | 2018
Samantha E. Adamson; Garren Montgomery; Scott A. Seaman; Shayn M. Peirce-Cottler; Norbert Leitinger
The purinergic receptor P2Y2 binds ATP to control chemotaxis of myeloid cells, and global P2Y2 receptor knockout mice are protected in models of acute inflammation. Chronic inflammation mediated by macrophages and other immune cells in adipose tissue contributes to the development of insulin resistance. Here, we investigate whether mice lacking P2Y2 receptors on myeloid cells are protected against acute and chronic inflammation. Wild-type mice were transplanted with either wild-type or P2Y2 receptor null bone marrow and treated with a sublethal dose of endotoxin as a model of acute inflammation, or fed a high-fat diet to induce obesity and insulin resistance as a model of chronic inflammation. P2Y2−/− chimeric mice were protected against acute inflammation. However, high-fat diet feeding induced comparable inflammation and insulin resistance in both WT and P2Y2−/− chimeric mice. Of note, confocal microscopy revealed significantly fewer crown-like structures, assemblies of macrophages around adipocytes, in P2Y2−/− chimeric mice compared to WT chimeric mice. We conclude that P2Y2 receptors on myeloid cells are important in mediating acute inflammation but are dispensable for the development of whole body insulin resistance in diet-induced obese mice.
Microcirculation | 2011
Marie Billaud; Jeremy Ross; Mark A. Greyson; Anthony C. Bruce; Scott A. Seaman; Katherine R. Heberlein; Jenny Han; Angela K. Best; Shayn M. Peirce; Brant E. Isakson
Please cite this paper as: Billaud, Ross, Greyson, Bruce, Seaman, Heberlein, Han, Best, Peirce and Isakson (2011). A New Method for In Vivo Visualization of Vessel Remodeling Using a Near‐Infrared Dye. Microcirculation 18(3), 163–171.
Microcirculation | 2017
Scott A. Seaman; Yiqi Cao; Chris A. Campbell; Shayn M. Peirce
The surgical transfer of skin, fat, and/or muscle from a donor site to a recipient site within the same patient is a widely performed procedure in reconstructive surgeries. A surgical pretreatment strategy that is intended to increase perfusion in the flap, termed “flap delay,” is a commonly employed technique by plastic surgeons prior to flap transplantation. Here, we explored whether CD68+/CD206+ macrophages are required for arteriogenesis within the flap by performing gain‐of‐function and loss‐of‐function studies in a previously published flap delay murine model.