Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott A. Showalter is active.

Publication


Featured researches published by Scott A. Showalter.


Journal of Chemical Theory and Computation | 2007

Validation of Molecular Dynamics Simulations of Biomolecules Using NMR Spin Relaxation as Benchmarks: Application to the AMBER99SB Force Field

Scott A. Showalter; Rafael Brüschweiler

Biological function of biomolecules is accompanied by a wide range of motional behavior. Accurate modeling of dynamics by molecular dynamics (MD) computer simulations is therefore a useful approach toward the understanding of biomolecular function. NMR spin relaxation measurements provide rigorous benchmarks for assessing important aspects of MD simulations, such as the amount and time scales of conformational space sampling, which are intimately related to the underlying molecular mechanics force field. Until recently, most simulations produced trajectories that exhibited too much dynamics particularly in flexible loop regions. Recent modifications made to the backbone φ and ψ torsion angle potentials of the AMBER and CHARMM force fields indicate that these changes produce more realistic molecular dynamics behavior. To assess the consequences of these changes, we performed a series of 5-20 ns molecular dynamics trajectories of human ubiquitin using the AMBER99 and AMBER99SB force fields for different conditions and water models and compare the results with NMR experimental backbone N-H S(2) order parameters. A quantitative analysis of the trajectories shows significantly improved agreement with experimental NMR data for the AMBER99SB force field as compared to AMBER99. Because NMR spin relaxation data (T1, T2, NOE) reflect the combined effects of spatial and temporal fluctuations of bond vectors, it is found that comparison of experimental and back-calculated NMR spin-relaxation data provides a more objective way of assessing the quality of the trajectory than order parameters alone. Analysis of a key mobile β-hairpin in ubiquitin demonstrates that the dynamics of mobile sites are not only reduced by the modified force field, but the extent of motional correlations between amino acids is also markedly diminished.


Angewandte Chemie | 2009

Protein Conformational Flexibility from Structure-Free Analysis of NMR Dipolar Couplings: Quantitative and Absolute Determination of Backbone Motion in Ubiquitin†

Loïc Salmon; Guillaume Bouvignies; Phineus R. L. Markwick; Nils Lakomek; Scott A. Showalter; Da-Wei Li; Korvin F. A. Walter; Christian Griesinger; Rafael Brüschweiler; Martin Blackledge

A robust procedure for the determination of protein-backbone motions on time scales of pico- to milliseconds directly from residual dipolar couplings has been developed that requires no additional scaling relative to external references. The results for ubiquitin (blue in graph: experimental N-HN order parameters) correspond closely to the amplitude, nature, and distribution of motion found in a 400 ns molecular-dynamics trajectory of ubiquitin (red).


Journal of Physical Chemistry B | 2010

Entropy localization in proteins.

Da-Wei Li; Scott A. Showalter; Rafael Brüschweiler

The configurational entropy of a protein is under physiological conditions a major contributor to the free energy. Its quantitative characterization is therefore an important step toward the understanding of protein function. The configurational entropy of the oncoprotein MDM2, whose determination is a challenge by experiment alone, is studied here by means of 0.4 μs molecular dynamics computer simulations in both the presence and absence of the p53-peptide ligand. By characterizing protein motions in dihedral angle space, it is found that the motional amplitudes change considerably upon ligand binding while correlations between dihedral angle motions are remarkably well conserved. This applies for backbone and side-chain dihedral angle pairs at both short- and long-range distance to the binding site. As a direct consequence, the change of the configurational entropy can be decomposed into a sum of local contributions. This significantly facilitates the understanding of the relationship between protein dynamics and thermodynamics, which is important, for example, in the context of protein-ligand and protein-protein interactions. The findings also have implications for the direct derivation of entropy changes from site-specific dynamics measurements as afforded by NMR spectroscopy.


Journal of Molecular Biology | 2002

A functional role for correlated motion in the N-terminal RNA-binding domain of human U1A protein.

Scott A. Showalter; Kathleen B. Hall

The N-terminal RNA-binding domain of the human U1A protein (RBD1) undergoes local conformational changes upon binding to its target RNA. Here, the wild-type RBD1 and two mutants are examined with molecular dynamics simulations that are analyzed using the reorientational eigenmode dynamics (RED) formalism. The results reveal changes in the magnitude and extent of coupled intra-domain motions resulting from single amino acid substitutions. Interpretation of the novel RED results and corresponding NMR relaxation data suggests that the loss of collective motions in the mutants could account for their weak RNA-binding.


Journal of Magnetic Resonance | 2009

Incorporating 1H chemical shift determination into 13C-direct detected spectroscopy of intrinsically disordered proteins in solution

Bernie O’Hare; Alan J. Benesi; Scott A. Showalter

Exclusively heteronuclear (13)C-detected NMR spectroscopy of proteins in solution has seen resurgence in the past several years. For disordered or unfolded proteins, which tend to have poor (1)H-amide chemical shift dispersion, these experiments offer enhanced resolution and the possibility of complete heteronuclear resonance assignment at the cost of leaving the (1)H resonances unassigned. Here we report two novel (13)C-detected NMR experiments which incorporate a (1)H chemical shift evolution period followed by (13)C-TOCSY mixing for aliphatic (1)H resonance assignment without reliance on (1)H detection.


Journal of Molecular Biology | 2008

Structure and dynamics of Ca2+-binding domain 1 of the Na+/Ca2+ exchanger in the presence and in the absence of Ca2+.

Eric Johnson; Lei Bruschweiler-Li; Scott A. Showalter; Geerten W. Vuister; Fengli Zhang; Rafael Brüschweiler

The Na(+)/Ca(2+) exchanger is the major exporter of Ca(2+) across the cell membrane of cardiomyocytes. The activity of the exchanger is regulated by a large intracellular loop that contains two Ca(2+)-binding domains, calcium-binding domain (CBD) 1 and CBD2. CBD1 binds Ca(2+) with much higher affinity than CBD2 and is considered to be the primary Ca(2+) sensor. The effect of Ca(2+) on the structure and dynamics of CBD1 has been characterized by NMR spectroscopy using chemical shifts, residual dipolar couplings, and spin relaxation. Residual dipolar couplings are used in a new way for residue selection in the determination of the anisotropic rotational diffusion tensor from spin relaxation data. The results provide a highly consistent description across these complementary data sets and show that Ca(2+) binding is accompanied by a selective conformational change among the binding site residues. Residues that exhibit a significant conformational change are also sites of altered dynamics. In particular, Ca(2+) binding restricts the mobility of the major acidic segment and affects the dynamics of several nearby binding loops. These observations indicate that Ca(2+) elicits a local transition to a well-ordered coordination geometry in the CBD1-binding site.


PLOS ONE | 2012

The role of human Dicer-dsRBD in processing small regulatory RNAs.

Christopher Wostenberg; Jeffrey W. Lary; Debashish Sahu; Roderico Acevedo; Kaycee A. Quarles; James L. Cole; Scott A. Showalter

One of the most exciting recent developments in RNA biology has been the discovery of small non-coding RNAs that affect gene expression through the RNA interference (RNAi) mechanism. Two major classes of RNAs involved in RNAi are small interfering RNA (siRNA) and microRNA (miRNA). Dicer, an RNase III enzyme, plays a central role in the RNAi pathway by cleaving precursors of both of these classes of RNAs to form mature siRNAs and miRNAs, which are then loaded into the RNA-induced silencing complex (RISC). miRNA and siRNA precursors are quite structurally distinct; miRNA precursors are short, imperfect hairpins while siRNA precursors are long, perfect duplexes. Nonetheless, Dicer is able to process both. Dicer, like the majority of RNase III enzymes, contains a dsRNA binding domain (dsRBD), but the data are sparse on the exact role this domain plays in the mechanism of Dicer binding and cleavage. To further explore the role of human Dicer-dsRBD in the RNAi pathway, we determined its binding affinity to various RNAs modeling both miRNA and siRNA precursors. Our study shows that Dicer-dsRBD is an avid binder of dsRNA, but its binding is only minimally influenced by a single-stranded – double-stranded junction caused by large terminal loops observed in miRNA precursors. Thus, the Dicer-dsRBD contributes directly to substrate binding but not to the mechanism of differentiating between pre-miRNA and pre-siRNA. In addition, NMR spin relaxation and MD simulations provide an overview of the role that dynamics contribute to the binding mechanism. We compare this current study with our previous studies of the dsRBDs from Drosha and DGCR8 to give a dynamic profile of dsRBDs in their apo-state and a mechanistic view of dsRNA binding by dsRBDs in general.


Biochemistry | 2015

Quantitative Biophysical Characterization of Intrinsically Disordered Proteins

Eric B. Gibbs; Scott A. Showalter

Intrinsically disordered proteins (IDPs) are broadly defined as protein regions that do not cooperatively fold into a spatially or temporally stable structure. Recent research strongly supports the hypothesis that a conserved functional role for structural disorder renders IDPs uniquely capable of functioning in biological processes such as cellular signaling and transcription. Recently, the frequency of application of rigorous mechanistic biochemistry and quantitative biophysics to disordered systems has increased dramatically. For example, the launch of the Protein Ensemble Database (pE-DB) demonstrates that the potential now exists to refine models for the native state structure of IDPs using experimental data. However, rigorous assessment of which observables place the strongest and least biased constraints on those ensembles is now needed. Most importantly, the past few years have seen strong growth in the number of biochemical and biophysical studies attempting to connect structural disorder with function. From the perspective of equilibrium thermodynamics, there is a clear need to assess the relative significance of hydrophobic versus electrostatic forces in IDP interactions, if it is possible to generalize at all. Finally, kinetic mechanisms that invoke conformational selection and/or induced fit are often used to characterize coupled IDP folding and binding, although application of these models is typically built upon thermodynamic observations. Recently, the reaction rates and kinetic mechanisms of more intrinsically disordered systems have been tested through rigorous kinetic experiments. Motivated by these exciting advances, here we provide a review and prospectus for the quantitative study of IDP structure, thermodynamics, and kinetics.


Analytical Biochemistry | 2014

Generating NMR chemical shift assignments of intrinsically disordered proteins using carbon-detected NMR methods

Debashish Sahu; Monique Bastidas; Scott A. Showalter

There is an extraordinary need to describe the structures of intrinsically disordered proteins (IDPs) due to their role in various biological processes involved in signaling and transcription. However, general study of IDPs by NMR spectroscopy is limited by the poor (1)H amide chemical shift dispersion typically observed in their spectra. Recently, (13)C direct-detected NMR spectroscopy has been recognized as enabling broad structural study of IDPs. Most notably, multidimensional experiments based on the (15)N,(13)C CON spectrum make complete chemical shift assignment feasible. Here we document a collection of NMR-based tools that efficiently lead to chemical shift assignment of IDPs, motivated by a case study of the C-terminal disordered region from the human pancreatic transcription factor Pdx1. Our strategy builds on the combination of two three-dimensional (3D) experiments, (HN-flip)N(CA)CON and 3D (HN-flip)N(CA)NCO, that enable daisy chain connections to be built along the IDP backbone, facilitated by acquisition of amino acid-specific (15)N,(13)C CON-detected experiments. Assignments are completed through carbon-detected, total correlation spectroscopy (TOCSY)-based side chain chemical shift measurement. Conducting our study required producing valuable modifications to many previously published pulse sequences, motivating us to announce the creation of a database of our pulse programs, which we make freely available through our website.


Biochemistry | 2013

Ensemble analysis of primary microRNA structure reveals an extensive capacity to deform near the Drosha cleavage site.

Kaycee A. Quarles; Debashish Sahu; Mallory A. Havens; Ellen R. Forsyth; Christopher Wostenberg; Michelle L. Hastings; Scott A. Showalter

Most noncoding RNAs function properly only when folded into complex three-dimensional (3D) structures, but the experimental determination of these structures remains challenging. Understanding of primary microRNA (miRNA) maturation is currently limited by a lack of determined structures for nonprocessed forms of the RNA. SHAPE chemistry efficiently determines RNA secondary structural information with single-nucleotide resolution, providing constraints suitable for input into MC-Pipeline for refinement of 3D structure models. Here we combine these approaches to analyze three structurally diverse primary microRNAs, revealing deviations from canonical double-stranded RNA structure in the stem adjacent to the Drosha cut site for all three. The necessity of these deformable sites for efficient processing is demonstrated through Drosha processing assays. The structure models generated herein support the hypothesis that deformable sequences spaced roughly once per turn of A-form helix, created by noncanonical structure elements, combine with the necessary single-stranded RNA-double-stranded RNA junction to define the correct Drosha cleavage site.

Collaboration


Dive into the Scott A. Showalter's collaboration.

Top Co-Authors

Avatar

Eric B. Gibbs

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaycee A. Quarles

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Debashish Sahu

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Monique Bastidas

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Roderico Acevedo

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Chad W. Lawrence

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathleen B. Hall

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

W. G. Noid

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge