Scott A. Tibbetts
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Scott A. Tibbetts.
Journal of Virology | 2002
Scott A. Tibbetts; Linda F. van Dyk; Samuel H. Speck; Herbert W. Virgin
ABSTRACT Despite active immune responses, gammaherpesviruses establish latency. In a related process, these viruses also persistently replicate by using a mechanism that requires different viral genes than acute-phase replication. Many questions remain about the role of immunity in chronic gammaherpesvirus infection, including whether the immune system controls latency by regulating latent cell numbers and/or other properties and what specific immune mediators control latency and persistent replication. We show here that CD8+ T cells regulate both latency and persistent replication and demonstrate for the first time that CD8+ T cells regulate both the number of latently infected cells and the efficiency with which infected cells reactivate from latency. Furthermore, we show that gamma interferon (IFN-γ) and perforin, which play no significant role during acute infection, are essential for immune control of latency and persistent replication. Surprisingly, the effects of perforin and IFN-γ are site specific, with IFN-γ being important in peritoneal cells while perforin is important in the spleen. Studies of the mechanisms of action of IFN-γ and perforin revealed that perforin acts primarily by controlling the number of latently infected cells while IFN-γ acts primarily by controlling reactivation efficiency. The immune system therefore controls chronic gammaherpesvirus infection by site-specific mechanisms that regulate both the number and reactivation phenotype of latently infected cells.
Journal of Virology | 2003
Scott A. Tibbetts; Joy Loh; Victor van Berkel; James Scott McClellan; Meagan A. Jacoby; Sharookh B. Kapadia; Samuel H. Speck; Herbert W. Virgin
ABSTRACT Gammaherpesviruses such as Epstein-Barr virus and Kaposis sarcoma-associated herpesvirus are important human pathogens that establish long-term latent infections. Understanding of the initiation and maintenance of latent infections has important implications for the prevention and treatment of gammaherpesvirus-related diseases. Although much is known about gammaherpesvirus pathogenesis, it is unclear how the infectious dose of a virus influences its ability to establish latent infection. To examine the relationship between the infectious dose and gammaherpesvirus latency, we inoculated wild-type mice with 0.01 to 106 PFU of murine gammaherpesvirus 68 (γHV68) and quantitatively measured latency and acute-phase replication. Surprisingly, during latency, the frequencies of ex vivo reactivation were similar over a 107-fold range of doses for i.p. infection and over a 104-fold range of doses for intranasal infection. Further, the frequencies of cells harboring viral genome during latency did not differ substantially over similar dose ranges. Although the kinetics of acute-phase replication were delayed at small doses of virus, the peak titer did not differ significantly between mice infected with a large dose of virus and those infected with a small dose of virus. The results presented here indicate that any initiation of infection leads to substantial acute-phase replication and subsequent establishment of a maximal level of latency. Thus, infections with doses as small as 0.1 PFU of γHV68 result in stable levels of acute-phase replication and latent infection. These results demonstrate that the equilibrium level of establishment of gammaherpesvirus latency is independent of the infectious dose and route of infection.
Journal of Virology | 2005
Vera L. Tarakanova; Felipe Suarez; Scott A. Tibbetts; Meagan A. Jacoby; Karen E. Weck; Jay L. Hess; Samuel H. Speck; Herbert W. Virgin
ABSTRACT Human gammaherpesvirus infections are associated with development of lymphoproliferative disease. Understanding of the mechanisms of gammaherpesvirus lymphomagenesis during chronic infection in a natural host has been limited by the exquisite species specificity of human gammaherpesviruses and the expense of primates. Murine gammaherpesvirus γHV68 is genetically and biologically related to human gammaherpesviruses and herpesvirus saimiri and has been reported to be associated with lymphoproliferative disease in mice (N. P. Sunil-Chandra, J. Arno, J. Fazakerley, and A. A. Nash, Am. J. Pathol. 145:818-826, 1994). We report the development of an animal model of γHV68 lymphomagenesis in BALB/c β2 microglobulin-deficient mice (BALB β2m−/−). γHV68 infection induced two lymphoproliferative lesions: B-cell lymphoma and atypical lymphoid hyperplasia (ALH). ALH lesion histology resembled lesions of Epstein-Barr virus-associated posttransplant lymphoproliferative disease and was characterized by the abnormal infiltration of the white pulp with cells expressing the plasma cell marker CD138. Lymphomas observed in γHV68-infected animals were B220+/CD3− large-cell lymphomas. γHV68-infected cells were common in ALH lesions as measured by in situ hybridization with a probe specific for viral tRNAs (vtRNAs), but they were scarce in γHV68-infected spleens with normal histology. Unlike ALH lesions, γHV68 vtRNA-positive cells were rare in lymphomas. γHV68 infection of BALB β2m−/− mice results in lymphoproliferation and lymphoma, providing a valuable tool for identifying viral and host genes involved in gammaherpesvirus-associated malignancies. Our findings suggest that γHV68 induces lymphomas via hit-and-run oncogenesis, paracrine effects, or stimulation of chronic inflammation.
Journal of Virology | 2006
Ashley Steed; Erik S. Barton; Scott A. Tibbetts; Daniel L. Popkin; Mary L. Lutzke; Rosemary Rochford; Herbert W. Virgin
ABSTRACT Establishment of latent infection and reactivation from latency are critical aspects of herpesvirus infection and pathogenesis. Interfering with either of these steps in the herpesvirus life cycle may offer a novel strategy for controlling herpesvirus infection and associated disease pathogenesis. Prior studies show that mice deficient in gamma interferon (IFN-γ) or the IFN-γ receptor have elevated numbers of cells reactivating from murine gammaherpesvirus 68 (γHV68) latency, produce infectious virus after the establishment of latency, and develop large-vessel vasculitis. Here, we demonstrate that IFN-γ is a powerful inhibitor of reactivation of γHV68 from latency in tissue culture. In vivo, IFN-γ controls viral gene expression during latency. Importantly, depletion of IFN-γ in latently infected mice results in an increased frequency of cells reactivating virus. This demonstrates that IFN-γ is important for immune surveillance that limits reactivation of γHV68 from latency.
Journal of Virology | 2003
Scott A. Tibbetts; J. Scott McClellan; Shivaprakash Gangappa; Samuel H. Speck; Herbert W. Virgin
ABSTRACT The fundamental question of whether a primed immune system is capable of preventing latent gammaherpesvirus infection remains unanswered. Recent studies showing that vaccination can reduce acute replication and short-term latency but cannot alter long-term latency further call into question the possibility of achieving sterilizing immunity against gammaherpesviruses. Using the murine gammaherpesvirus 68 (γHV68) system, we demonstrate that it is possible to effectively vaccinate against long-term latency. By immunizing mice with a γHV68 mutant virus that is deficient in its ability to reactivate from latency, we reduced latent infection of wild-type challenge virus to a level below the limit of detection. Establishment of latency was inhibited by vaccination regardless of whether mice were challenged intraperitoneally or intranasally. Passive transfer of antibody from vaccinated mice could partially reconstitute the effect, demonstrating that antibody is an important component of vaccination. These results demonstrate the potential of a memory immune response against gammaherpesviruses to alter long-term latency and suggest that limiting long-term latent infection in a clinically relevant situation is an attainable goal.
Journal of Virology | 2010
Carrie B. Coleman; Michael S. Nealy; Scott A. Tibbetts
ABSTRACT Gammaherpesviruses, including Kaposis sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 [HHV-8]), Epstein-Barr virus (EBV), and murine gammaherpesvirus 68 (MHV68; also known as gammaherpesvirus 68 [γHV68] or murine herpesvirus 4 [MuHV-4]), establish lifelong latency in the resting memory B cell compartment. However, little is known about how this reservoir of infected mature B cells is maintained for the life of the host. In the context of a normal immune system, the mature B cell pool is naturally maintained by the renewable populations of developing B cells that arise from hematopoiesis. Thus, recurrent infection of these developing B cell populations could allow the virus continual access to the B cell lineage and, subsequent to differentiation, the memory B cell compartment. To begin to address this hypothesis, we examined whether MHV68 establishes latency in developing B cells during a normal course of infection. In work described here, we demonstrate the presence of viral genome in bone marrow pro-pre-B cells and immature B cells during early latency and immature B cells during long-term latency. Further, we show that transitional B cells in the spleen are latently infected and express the latency-associated nuclear antigen (LANA) throughout chronic infection. Because developing B cells normally exhibit a short life span and a high rate of turnover, these findings suggest a model in which gammaherpesviruses may gain access to the mature B cell compartment by recurrent seeding of developing B cells.
Journal of Virology | 2004
James Scott McClellan; Scott A. Tibbetts; Shivaprakash Gangappa; Kelly A. Brett; Herbert W. Virgin
ABSTRACT We have previously demonstrated that it is possible to effectively vaccinate against long-term murine gammaherpesvirus 68 (γHV68) latency by using a reactivation-deficient virus as a vaccine (S. A. Tibbetts, J. S. McClellan, S. Gangappa, S. H. Speck, and H. W. Virgin IV, J. Virol. 77:2522-2529, 2003). Immune antibody was capable of recapitulating aspects of this vaccination. This led us to determine whether antibody is required for vaccination against latency. Using mice lacking antigen-specific antibody responses, we demonstrate here that antibody and B cells are not required for vaccination against latency. We also show that surveillance of latent infection in normal animals depends on CD4 and CD8 T cells, suggesting that T cells might be capable of preventing the establishment of latency. In the absence of an antibody response, CD4 T cells but not CD8 T cells are required for effective vaccination against latency in peritoneal cells, while either CD4 or CD8 T cells can prevent the establishment of splenic latency. Therefore, CD4 T cells play a critical role in immune surveillance of gammaherpesvirus latency and can mediate vaccination against latency in the absence of antibody responses.
PLOS Pathogens | 2006
Douglas C. Braaten; James Scott McClellan; Ilhem Messaoudi; Scott A. Tibbetts; Kelly B. McClellan; Janko Nikolich-Zugich; Herbert W. Virgin
Control of virus infection is mediated in part by major histocompatibility complex (MHC) Class Ia presentation of viral peptides to conventional CD8 T cells. Although important, the absolute requirement for MHC Class Ia–dependent CD8 T cells for control of chronic virus infection has not been formally demonstrated. We show here that mice lacking MHC Class Ia molecules (Kb−/−xDb−/− mice) effectively control chronic γ-herpesvirus 68 (γHV68) infection via a robust expansion of β2-microglobulin (β2-m)-dependent, but CD1d-independent, unconventional CD8 T cells. These unconventional CD8 T cells expressed: (1) CD8αβ and CD3, (2) cell surface molecules associated with conventional effector/memory CD8 T cells, (3) TCRαβ with a significant Vβ4, Vβ3, and Vβ10 bias, and (4) the key effector cytokine interferon-γ (IFNγ). Unconventional CD8 T cells utilized a diverse TCR repertoire, and CDR3 analysis suggests that some of that repertoire may be utilized even in the presence of conventional CD8 T cells. This is the first demonstration to our knowledge that β2-m–dependent, but Class Ia–independent, unconventional CD8 T cells can efficiently control chronic virus infection, implicating a role for β2-n–dependent non-classical MHC molecules in control of chronic viral infection. We speculate that similar unconventional CD8 T cells may be able to control of other chronic viral infections, especially when viruses evade immunity by inhibiting generation of Class Ia–restricted T cells.
Antimicrobial Agents and Chemotherapy | 2013
Hao Chen; Donghang Zheng; Jeff Abbott; Liying Liu; Mee Y. Bartee; Maureen T. Long; Jennifer Davids; Jennifer Williams; Heinz Feldmann; James E. Strong; Katrina R. Grau; Scott A. Tibbetts; Colin Macaulay; Grant McFadden; Robert Thoburn; David A. Lomas; Francis G. Spinale; Herbert W. Virgin; Alexandra Lucas
ABSTRACT Lethal viral infections produce widespread inflammation with vascular leak, clotting, and bleeding (disseminated intravascular coagulation [DIC]), organ failure, and high mortality. Serine proteases in clot-forming (thrombotic) and clot-dissolving (thrombolytic) cascades are activated by an inflammatory cytokine storm and also can induce systemic inflammation with loss of normal serine protease inhibitor (serpin) regulation. Myxomavirus secretes a potent anti-inflammatory serpin, Serp-1, that inhibits clotting factor X (fX) and thrombolytic tissue- and urokinase-type plasminogen activators (tPA and uPA) with anti-inflammatory activity in multiple animal models. Purified serpin significantly improved survival in a murine gammaherpesvirus 68 (MHV68) infection in gamma interferon receptor (IFN-γR) knockout mice, a model for lethal inflammatory vasculitis. Treatment of MHV68-infected mice with neuroserpin, a mammalian serpin that inhibits only tPA and uPA, was ineffective. Serp-1 reduced virus load, lung hemorrhage, and aortic, lung, and colon inflammation in MHV68-infected mice and also reduced virus load. Neuroserpin suppressed a wide range of immune spleen cell responses after MHV68 infection, while Serp-1 selectively increased CD11c+ splenocytes (macrophage and dendritic cells) and reduced CD11b+ tissue macrophages. Serp-1 altered gene expression for coagulation and inflammatory responses, whereas neuroserpin did not. Serp-1 treatment was assessed in a second viral infection, mouse-adapted Zaire ebolavirus in wild-type BALB/c mice, with improved survival and reduced tissue necrosis. In summary, treatment with this unique myxomavirus-derived serpin suppresses systemic serine protease and innate immune responses caused by unrelated lethal viral infections (both RNA and DNA viruses), providing a potential new therapeutic approach for treatment of lethal viral sepsis.
Journal of Virology | 2008
Haiyan Li; Kazufumi Ikuta; John W. Sixbey; Scott A. Tibbetts
ABSTRACT Murine gammaherpesvirus 68 (γHV68 or MHV68) is genetically related to the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposis sarcoma-associated herpesvirus (KSHV), providing a useful system for in vivo studies of the virus-host relationship. To begin to address fundamental questions about the mechanisms of the establishment of gammaherpesvirus latency, we previously generated a replication-defective γHV68 lacking the expression of the single-stranded DNA binding protein encoded by orf6. In work presented here, we demonstrate that this mutant virus established a long-term infection in vivo that was molecularly identical to wild-type virus latency. Thus, despite the absence of an acute phase of lytic replication, the mutant virus established a chronic infection in which the viral genome (i) was maintained as an episome and (ii) expressed latency-associated, but not lytic replication-associated, genes. Macrophages purified from mice infected with the replication-defective virus harbored viral genome at a frequency that was nearly identical to that of wild-type γHV68; however, the frequency of B cells harboring viral genome was greatly reduced in the absence of lytic replication. Thus, this replication-defective gammaherpesvirus efficiently established in vivo infection in macrophages that was molecularly indistinguishable from wild-type virus latency. These data point to a critical role for lytic replication or reactivation in the establishment or maintenance of latent infection in B cells.