Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott A. Tomlins is active.

Publication


Featured researches published by Scott A. Tomlins.


Proceedings of the National Academy of Sciences of the United States of America | 2003

EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells

Celina G. Kleer; Qi Cao; Sooryanarayana Varambally; Ronglai Shen; Ichiro Ota; Scott A. Tomlins; Debashis Ghosh; Richard George Antonius Bernardus Sewalt; Arie P. Otte; Daniel F. Hayes; Michael S. Sabel; Donna L. Livant; Stephen J. Weiss; Mark A. Rubin; Arul M. Chinnaiyan

The Polycomb Group Protein EZH2 is a transcriptional repressor involved in controlling cellular memory and has been linked to aggressive prostate cancer. Here we investigate the functional role of EZH2 in cancer cell invasion and breast cancer progression. EZH2 transcript and protein were consistently elevated in invasive breast carcinoma compared with normal breast epithelia. Tissue microarray analysis, which included 917 samples from 280 patients, demonstrated that EZH2 protein levels were strongly associated with breast cancer aggressiveness. Overexpression of EZH2 in immortalized human mammary epithelial cell lines promotes anchorage-independent growth and cell invasion. EZH2-mediated cell invasion required an intact SET domain and histone deacetylase activity. This study provides compelling evidence for a functional link between dysregulated cellular memory, transcriptional repression, and neoplastic transformation.


Nature | 2012

The mutational landscape of lethal castration-resistant prostate cancer

Catherine S. Grasso; Yi Mi Wu; Dan R. Robinson; Xuhong Cao; Saravana M. Dhanasekaran; Amjad P. Khan; Michael J. Quist; Xiaojun Jing; Robert J. Lonigro; J. Chad Brenner; Irfan A. Asangani; Bushra Ateeq; Sang Y. Chun; Javed Siddiqui; Lee Sam; Matt Anstett; Rohit Mehra; John R. Prensner; Nallasivam Palanisamy; Gregory A Ryslik; Fabio Vandin; Benjamin J. Raphael; Lakshmi P. Kunju; Daniel R. Rhodes; Kenneth J. Pienta; Arul M. Chinnaiyan; Scott A. Tomlins

Characterization of the prostate cancer transcriptome and genome has identified chromosomal rearrangements and copy number gains and losses, including ETS gene family fusions, PTEN loss and androgen receptor (AR) amplification, which drive prostate cancer development and progression to lethal, metastatic castration-resistant prostate cancer (CRPC). However, less is known about the role of mutations. Here we sequenced the exomes of 50 lethal, heavily pre-treated metastatic CRPCs obtained at rapid autopsy (including three different foci from the same patient) and 11 treatment-naive, high-grade localized prostate cancers. We identified low overall mutation rates even in heavily treated CRPCs (2.00 per megabase) and confirmed the monoclonal origin of lethal CRPC. Integrating exome copy number analysis identified disruptions of CHD1 that define a subtype of ETS gene family fusion-negative prostate cancer. Similarly, we demonstrate that ETS2, which is deleted in approximately one-third of CRPCs (commonly through TMPRSS2:ERG fusions), is also deregulated through mutation. Furthermore, we identified recurrent mutations in multiple chromatin- and histone-modifying genes, including MLL2 (mutated in 8.6% of prostate cancers), and demonstrate interaction of the MLL complex with the AR, which is required for AR-mediated signalling. We also identified novel recurrent mutations in the AR collaborating factor FOXA1, which is mutated in 5 of 147 (3.4%) prostate cancers (both untreated localized prostate cancer and CRPC), and showed that mutated FOXA1 represses androgen signalling and increases tumour growth. Proteins that physically interact with the AR, such as the ERG gene fusion product, FOXA1, MLL2, UTX (also known as KDM6A) and ASXL1 were found to be mutated in CRPC. In summary, we describe the mutational landscape of a heavily treated metastatic cancer, identify novel mechanisms of AR signalling deregulated in prostate cancer, and prioritize candidates for future study.


Cell | 2015

Integrative clinical genomics of advanced prostate cancer

Dan R. Robinson; Eliezer M. Van Allen; Yi Mi Wu; Nikolaus Schultz; Robert J. Lonigro; Juan Miguel Mosquera; Bruce Montgomery; Mary-Ellen Taplin; Colin C. Pritchard; Gerhardt Attard; Himisha Beltran; Wassim Abida; Robert K. Bradley; Jake Vinson; Xuhong Cao; Pankaj Vats; Lakshmi P. Kunju; Maha Hussain; Felix Y. Feng; Scott A. Tomlins; Kathleen A. Cooney; David C. Smith; Christine Brennan; Javed Siddiqui; Rohit Mehra; Yu Chen; Dana E. Rathkopf; Michael J. Morris; Stephen B. Solomon; Jeremy C. Durack

Toward development of a precision medicine framework for metastatic, castration-resistant prostate cancer (mCRPC), we established a multi-institutional clinical sequencing infrastructure to conduct prospective whole-exome and transcriptome sequencing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC affected individuals. Aberrations of AR, ETS genes, TP53, and PTEN were frequent (40%-60% of cases), with TP53 and AR alterations enriched in mCRPC compared to primary prostate cancer. We identified new genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, β-catenin, and ZBTB16/PLZF. Moreover, aberrations of BRCA2, BRCA1, and ATM were observed at substantially higher frequencies (19.3% overall) compared to those in primary prostate cancers. 89% of affected individuals harbored a clinically actionable aberration, including 62.7% with aberrations in AR, 65% in other cancer-related genes, and 8% with actionable pathogenic germline alterations. This cohort study provides clinically actionable information that could impact treatment decisions for these affected individuals.


Nature | 2007

Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer.

Scott A. Tomlins; Bharathi Laxman; Saravana M. Dhanasekaran; Beth E. Helgeson; Xuhong Cao; David S. Morris; Anjana Menon; Xiaojun Jing; Qi Cao; Bo Han; Jindan Yu; Lei Wang; James E. Montie; Mark A. Rubin; Kenneth J. Pienta; Diane Roulston; Rajal B. Shah; Sooryanarayana Varambally; Rohit Mehra; Arul M. Chinnaiyan

Recently, we identified recurrent gene fusions involving the 5′ untranslated region of the androgen-regulated gene TMPRSS2 and the ETS (E26 transformation-specific) family genes ERG, ETV1 or ETV4 in most prostate cancers. Whereas TMPRSS2–ERG fusions are predominant, fewer TMPRSS2–ETV1 cases have been identified than expected on the basis of the frequency of high (outlier) expression of ETV1 (refs 3–13). Here we explore the mechanism of ETV1 outlier expression in human prostate tumours and prostate cancer cell lines. We identified previously unknown 5′ fusion partners in prostate tumours with ETV1 outlier expression, including untranslated regions from a prostate-specific androgen-induced gene (SLC45A3) and an endogenous retroviral element (HERV-K_22q11.23), a prostate-specific androgen-repressed gene (C15orf21), and a strongly expressed housekeeping gene (HNRPA2B1). To study aberrant activation of ETV1, we identified two prostate cancer cell lines, LNCaP and MDA-PCa 2B, that had ETV1 outlier expression. Through distinct mechanisms, the entire ETV1 locus (7p21) is rearranged to a 1.5-megabase prostate-specific region at 14q13.3–14q21.1 in both LNCaP cells (cryptic insertion) and MDA-PCa 2B cells (balanced translocation). Because the common factor of these rearrangements is aberrant ETV1 overexpression, we recapitulated this event in vitro and in vivo, demonstrating that ETV1 overexpression in benign prostate cells and in the mouse prostate confers neoplastic phenotypes. Identification of distinct classes of ETS gene rearrangements demonstrates that dormant oncogenes can be activated in prostate cancer by juxtaposition to tissue-specific or ubiquitously active genomic loci. Subversion of active genomic regulatory elements may serve as a more generalized mechanism for carcinoma development. Furthermore, the identification of androgen-repressed and insensitive 5′ fusion partners may have implications for the anti-androgen treatment of advanced prostate cancer.


Cancer Cell | 2010

An Integrated Network of Androgen Receptor, Polycomb, and TMPRSS2-ERG Gene Fusions in Prostate Cancer Progression

Jindan Yu; Jianjun Yu; Ram Shankar Mani; Qi Cao; Chad Brenner; Xuhong Cao; Xiaoju Wang; Longtao Wu; James Li; Ming Hu; Yusong Gong; Hong Cheng; Bharathi Laxman; Adaikkalam Vellaichamy; Sunita Shankar; Yong Li; Saravana M. Dhanasekaran; Roger Morey; Terrence R. Barrette; Robert J. Lonigro; Scott A. Tomlins; Sooryanarayana Varambally; Zhaohui S. Qin; Arul M. Chinnaiyan

Chromosomal rearrangements fusing the androgen-regulated gene TMPRSS2 to the oncogenic ETS transcription factor ERG occur in approximately 50% of prostate cancers, but how the fusion products regulate prostate cancer remains unclear. Using chromatin immunoprecipitation coupled with massively parallel sequencing, we found that ERG disrupts androgen receptor (AR) signaling by inhibiting AR expression, binding to and inhibiting AR activity at gene-specific loci, and inducing repressive epigenetic programs via direct activation of the H3K27 methyltransferase EZH2, a Polycomb group protein. These findings provide a working model in which TMPRSS2-ERG plays a critical role in cancer progression by disrupting lineage-specific differentiation of the prostate and potentiating the EZH2-mediated dedifferentiation program.


Nature Genetics | 2013

Activating ESR1 mutations in hormone-resistant metastatic breast cancer

Dan R. Robinson; Yi Mi Wu; Pankaj Vats; Fengyun Su; Robert J. Lonigro; Xuhong Cao; Shanker Kalyana-Sundaram; Rui Wang; Yu Ning; Lynda Hodges; Amy Gursky; Javed Siddiqui; Scott A. Tomlins; Sameek Roychowdhury; Kenneth J. Pienta; Scott Y. H. Kim; J. Scott Roberts; James M. Rae; Catherine Van Poznak; Daniel F. Hayes; Rashmi Chugh; Lakshmi P. Kunju; Moshe Talpaz; Anne F. Schott; Arul M. Chinnaiyan

Breast cancer is the most prevalent cancer in women, and over two-thirds of cases express estrogen receptor-α (ER-α, encoded by ESR1). Through a prospective clinical sequencing program for advanced cancers, we enrolled 11 patients with ER-positive metastatic breast cancer. Whole-exome and transcriptome analysis showed that six cases harbored mutations of ESR1 affecting its ligand-binding domain (LBD), all of whom had been treated with anti-estrogens and estrogen deprivation therapies. A survey of The Cancer Genome Atlas (TCGA) identified four endometrial cancers with similar mutations of ESR1. The five new LBD-localized ESR1 mutations identified here (encoding p.Leu536Gln, p.Tyr537Ser, p.Tyr537Cys, p.Tyr537Asn and p.Asp538Gly) were shown to result in constitutive activity and continued responsiveness to anti-estrogen therapies in vitro. Taken together, these studies suggest that activating mutations in ESR1 are a key mechanism in acquired endocrine resistance in breast cancer therapy.


Cancer Research | 2006

TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer.

Scott A. Tomlins; Rohit Mehra; Daniel R. Rhodes; Lisa Smith; Diane Roulston; Beth E. Helgeson; Xuhong Cao; John T. Wei; Mark A. Rubin; Rajal B. Shah; Arul M. Chinnaiyan

Although common in hematologic and mesenchymal malignancies, recurrent gene fusions have not been well characterized in epithelial carcinomas. Recently, using a novel bioinformatic approach, we identified recurrent gene fusions between TMPRSS2 and the ETS family members ERG or ETV1 in the majority of prostate cancers. Here, we interrogated the expression of all ETS family members in prostate cancer profiling studies and identified marked overexpression of ETV4 in 2 of 98 cases. In one such case, we confirmed the overexpression of ETV4 using quantitative PCR, and by rapid amplification of cDNA ends, quantitative PCR, and fluorescence in situ hybridization, we show that the TMPRSS2 (21q22) and ETV4 (17q21) loci are fused in this case. This result defines a third molecular subtype of prostate cancer and supports the hypothesis that dysregulation of ETS family members through fusions with TMRPSS2 may be an initiating event in prostate cancer development.


Oncogene | 2008

Repression of E-cadherin by the polycomb group protein EZH2 in cancer.

Qi Cao; Jindan Yu; Saravana M. Dhanasekaran; Joungmok Kim; Ram Shankar Mani; Scott A. Tomlins; Rohit Mehra; Bharathi Laxman; Xuhong Cao; Celina G. Kleer; Sooryanarayana Varambally; Arul M. Chinnaiyan

Enhancer of zeste homolog 2 (EZH2) is a critical component of the polycomb-repressive complex 2 (PRC2), which is involved in gene silencing and histone H3 lysine 27 methylation. EZH2 has a master regulatory function in controlling such processes as stem cell differentiation, cell proliferation, early embryogenesis and X chromosome inactivation. Although benign epithelial cells express very low levels of EZH2, increased levels of EZH2 have been observed in aggressive solid tumors such as those of the prostate, breast and bladder. The mechanism by which EZH2 mediates tumor aggressiveness is unclear. Here, we demonstrate that EZH2 mediates transcriptional silencing of the tumor suppressor gene E-cadherin by trimethylation of H3 lysine 27. Histone deacetylase inhibitors can prevent EZH2-mediated repression of E-cadherin and attenuate cell invasion, suggesting a possible mechanism that may be useful for the development of therapeutic treatments. Taken together, these observations provide a novel mechanism of E-cadherin regulation and establish a functional link between dysregulation of EZH2 and repression of E-cadherin during cancer progression.


Nature Biotechnology | 2005

Probabilistic model of the human protein-protein interaction network

Daniel R. Rhodes; Scott A. Tomlins; Sooryanarayana Varambally; Vasudeva Mahavisno; Terrence R. Barrette; Shanker Kalyana-Sundaram; Debashis Ghosh; Akhilesh Pandey; Arul M. Chinnaiyan

A catalog of all human protein-protein interactions would provide scientists with a framework to study protein deregulation in complex diseases such as cancer. Here we demonstrate that a probabilistic analysis integrating model organism interactome data, protein domain data, genome-wide gene expression data and functional annotation data predicts nearly 40,000 protein-protein interactions in humans—a result comparable to those obtained with experimental and computational approaches in model organisms. We validated the accuracy of the predictive model on an independent test set of known interactions and also experimentally confirmed two predicted interactions relevant to human cancer, implicating uncharacterized proteins into definitive pathways. We also applied the human interactome network to cancer genomics data and identified several interaction subnetworks activated in cancer. This integrative analysis provides a comprehensive framework for exploring the human protein interaction network.


Cancer Research | 2008

A First-Generation Multiplex Biomarker Analysis of Urine for the Early Detection of Prostate Cancer

Bharathi Laxman; David S. Morris; Jianjun Yu; Javed Siddiqui; Jie Cao; Rohit Mehra; Robert J. Lonigro; Alex Tsodikov; John T. Wei; Scott A. Tomlins; Arul M. Chinnaiyan

Although prostate-specific antigen (PSA) serum level is currently the standard of care for prostate cancer screening in the United States, it lacks ideal specificity and additional biomarkers are needed to supplement or potentially replace serum PSA testing. Emerging evidence suggests that monitoring the noncoding RNA transcript PCA3 in urine may be useful in detecting prostate cancer in patients with elevated PSA levels. Here, we show that a multiplex panel of urine transcripts outperforms PCA3 transcript alone for the detection of prostate cancer. We measured the expression of seven putative prostate cancer biomarkers, including PCA3, in sedimented urine using quantitative PCR on a cohort of 234 patients presenting for biopsy or radical prostatectomy. By univariate analysis, we found that increased GOLPH2, SPINK1, and PCA3 transcript expression and TMPRSS2:ERG fusion status were significant predictors of prostate cancer. Multivariate regression analysis showed that a multiplexed model, including these biomarkers, outperformed serum PSA or PCA3 alone in detecting prostate cancer. The area under the receiver-operating characteristic curve was 0.758 for the multiplexed model versus 0.662 for PCA3 alone (P = 0.003). The sensitivity and specificity for the multiplexed model were 65.9% and 76.0%, respectively, and the positive and negative predictive values were 79.8% and 60.8%, respectively. Taken together, these results provide the framework for the development of highly optimized, multiplex urine biomarker tests for more accurate detection of prostate cancer.

Collaboration


Dive into the Scott A. Tomlins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felix Y. Feng

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sooryanarayana Varambally

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge