Scott A. Williams
New York University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Scott A. Williams.
eLife | 2015
Lee R. Berger; John Hawks; Darryl J. de Ruiter; Steven E. Churchill; Peter Schmid; Lucas K. Delezene; Tracy L. Kivell; Heather M. Garvin; Scott A. Williams; Jeremy M. DeSilva; Matthew M. Skinner; Charles M. Musiba; Noel Cameron; Trenton W. Holliday; William E. H. Harcourt-Smith; Rebecca Rogers Ackermann; Markus Bastir; Barry Bogin; Debra R. Bolter; Juliet K. Brophy; Zachary Cofran; Kimberly A. Congdon; Andrew S. Deane; Mana Dembo; Michelle S.M. Drapeau; Marina Elliott; Elen M Feuerriegel; Daniel García-Martínez; David J. Green; Alia N. Gurtov
Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb. These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa. DOI: http://dx.doi.org/10.7554/eLife.09560.001
Proceedings of the National Academy of Sciences of the United States of America | 2010
Milena R. Shattuck; Scott A. Williams
The evolutionary theory of aging predicts that species will experience delayed senescence and increased longevity when rates of extrinsic mortality are reduced. It has long been recognized that birds and bats are characterized by lower rates of extrinsic mortality and greater longevities than nonvolant endotherms, presumably because flight reduces exposure to terrestrial predators, disease, and environmental hazards. Like flight, arboreality may act to reduce extrinsic mortality, delay senescence, and increase longevity and has been suggested as an explanation for the long lifespans of primates. However, this hypothesis has yet to be tested in mammals in general. We analyze a large dataset of mammalian longevity records to test whether arboreal mammals are characterized by greater longevities than terrestrial mammals. Here, we show that arboreal mammals are longer lived than terrestrial mammals at common body sizes, independent of phylogeny. Subclade analyses demonstrate that this trend holds true in nearly every mammalian subgroup, with two notable exceptions—metatherians (marsupials) and euarchontans (primates and their close relatives). These subgroups are unique in that each has experienced a long and persistent arboreal evolutionary history, with subsequent transitions to terrestriality occurring multiple times within each group. In all other clades examined, terrestriality appears to be the primitive condition, and species that become arboreal tend to experience increased longevity, often independently in multiple lineages within each clade. Adoption of an arboreal lifestyle may have allowed for increased longevity in these lineages and in primates in general. Overall, these results confirm the fundamental predictions of the evolutionary theory of aging.
Science | 2013
Scott A. Williams; Kelly R. Ostrofsky; Nakita Frater; Steven E. Churchill; Peter Schmid; Lee R. Berger
Two partial vertebral columns of Australopithecus sediba grant insight into aspects of early hominin spinal mobility, lumbar curvature, vertebral formula, and transitional vertebra position. Au. sediba likely possessed five non–rib-bearing lumbar vertebrae and five sacral elements, the same configuration that occurs modally in modern humans. This finding contrasts with other interpretations of early hominin regional vertebral numbers. Importantly, the transitional vertebra is distinct from and above the last rib-bearing vertebra in Au. sediba, resulting in a functionally longer lower back. This configuration, along with a strongly wedged last lumbar vertebra and other indicators of lordotic posture, would have contributed to a highly flexible spine that is derived compared with earlier members of the genus Australopithecus and similar to that of the Nariokotome Homo erectus skeleton.
Nature Ecology and Evolution | 2017
Alex R. DeCasien; Scott A. Williams; James P. Higham
The social brain hypothesis posits that social complexity is the primary driver of primate cognitive complexity, and that social pressures ultimately led to the evolution of the large human brain. Although this idea has been supported by studies indicating positive relationships between relative brain and/or neocortex size and group size, reported effects of different social and mating systems are highly conflicting. Here, we use a much larger sample of primates, more recent phylogenies, and updated statistical techniques, to show that brain size is predicted by diet, rather than multiple measures of sociality, after controlling for body size and phylogeny. Specifically, frugivores exhibit larger brains than folivores. Our results call into question the current emphasis on social rather than ecological explanations for the evolution of large brains in primates and evoke a range of ecological and developmental hypotheses centred on frugivory, including spatial information storage, extractive foraging and overcoming metabolic constraints.
Journal of Human Evolution | 2010
Scott A. Williams
The evolution of knuckle-walking has profound implications for our understanding of the emergence of bipedalism. The modern debate surrounding its evolution is concerned with whether or not it is homologous in chimpanzees and gorillas. Here, this problem is approached using the methods of morphological integration to test hypotheses of patterns and magnitudes of integration in the third manual ray and capitate. If knuckle-walking morphologies are highly integrated and evolve in a correlated bundle (i.e., comprising a functional complex), it seems reasonable that they could have been recruited independently relatively easily in gorillas and chimpanzees, thus increasing the likelihood of homoplasy. If, however, there is no evidence for a knuckle-walking complex, then it seems less likely that chimpanzees and gorillas would have evolved knuckle-walking independently. Results indicate that chimpanzees and gorillas are not characterized by high magnitudes of integration or unique patterns of integration that distinguish them from non-knuckle-walking taxa. This does not support the hypothesis of a knuckle-walking complex, nor does it support the contention that knuckle-walking could have been easily evolved independently in chimpanzees and gorillas. Implications for trait analysis and the evolution of bipedalism are discussed, as are recent analyses supporting the independent origins of knuckle-walking.
Evolutionary Anthropology | 2015
Scott A. Williams; Gabrielle A. Russo
The postcranial axial skeleton exhibits considerable morphological and functional diversity among living primates. Particularly striking are the derived features in hominoids that distinguish them from most other primates and mammals. In contrast to the primitive catarrhine morphotype, which presumably possessed an external (protruding) tail and emphasized more pronograde trunk posture, all living hominoids are characterized by the absence of an external tail and adaptations to orthograde trunk posture. Moreover, modern humans evolved unique vertebral features that satisfy the demands of balancing an upright torso over the hind limbs during habitual terrestrial bipedalism. Our ability to identify the evolutionary timing and understand the functional and phylogenetic significance of these fundamental changes in postcranial axial skeletal anatomy in the hominoid fossil record is key to reconstructing ancestral hominoid patterns and retracing the evolutionary pathways that led to living apes and modern humans. Here, we provide an overview of what is known about evolution of the hominoid vertebral column, focusing on the currently available anatomical evidence of three major transitions: tail loss and adaptations to orthograde posture and bipedal locomotion.
American Journal of Physical Anthropology | 2012
Scott A. Williams
A fundamental adaptation to orthograde posture and locomotion amongst living hominoid primates is a numerically reduced lumbar column, which acts to stiffen the lower back and reduce injuries to the intervertebral discs. A related and functionally complementary strategy of spinal stability is a caudal position of the diaphragmatic vertebra relative to the primitive condition found in nonhominoid primates and most other mammals. The diaphragmatic vertebra marks the transition in vertebral articular facet (zygapophysis) orientation, which either resists (prediaphragmatic) or allows (postdiaphragmatic) trunk movement in the sagittal plane (i.e., flexion and extension). Unlike most mammals, which have dorsomobile spines (long lumbar columns and cranially placed diaphragmatic vertebrae) for running and leaping, hominoids possess dorsostable spines (short lumbar columns and caudally placed diaphragmatic vertebrae) adapted to orthogrady and antipronogrady. In contrast to humans and other extant hominoids, all known early hominin partial vertebral columns demonstrate cranial displacement of the diaphragmatic vertebra. To address this difference, variation in diaphragmatic placement is assessed in a large sample of catarrhine primates. I show that while hominoids are characterized by modal common placement of diaphragmatic and last rib-bearing vertebrae in general, interspecific differences in intraspecific patterns of variation exist. In particular, humans and chimpanzees show nearly identical patterns of diaphragmatic placement. A scenario of hominin evolution is proposed in which early hominins evolved cranial displacement from the ancestral hominid condition of common placement to achieve effective lumbar lordosis during the evolution of bipedal locomotion.
eLife | 2017
John Hawks; Marina Elliott; Peter Schmid; Steven E. Churchill; Darryl J. de Ruiter; Eric M. Roberts; Hannah L. Hilbert-Wolf; Heather M. Garvin; Scott A. Williams; Lucas K. Delezene; Elen M Feuerriegel; Patrick S. Randolph-Quinney; Tracy L. Kivell; Myra F. Laird; Gaokgatlhe Tawane; Jeremy M. DeSilva; Shara E. Bailey; Juliet K. Brophy; Marc R. Meyer; Matthew M. Skinner; Matthew W. Tocheri; Caroline VanSickle; Christopher S. Walker; Timothy L. Campbell; Brian F. Kuhn; Ashley Kruger; Steven Tucker; Alia N. Gurtov; Nompumelelo Hlophe; Rick Hunter
The Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to Homo naledi. Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains. In each of three collection areas within the Lesedi Chamber, diagnostic skeletal material allows a clear attribution to H. naledi. Both adult and immature material is present. The hominin remains represent at least three individuals based upon duplication of elements, but more individuals are likely present based upon the spatial context. The most significant specimen is the near-complete cranium of a large individual, designated LES1, with an endocranial volume of approximately 610 ml and associated postcranial remains. The Lesedi Chamber skeletal sample extends our knowledge of the morphology and variation of H. naledi, and evidence of H. naledi from both recovery localities shows a consistent pattern of differentiation from other hominin species. DOI: http://dx.doi.org/10.7554/eLife.24232.001
Journal of Human Evolution | 2012
Scott A. Williams
The vertebral column plays a central role in the evolution and performance of positional behaviors, including upright posture and bipedal locomotion in the human lineage. The lumbar column, in particular, is associated with locomotor function. As such, its numerical composition has been a major source of contention in the paleoanthropological literature. Ever since Robinson’s (1972) description and interpretation of the nearly complete thoracolumbar vertebral column of Sts 14 (Australopithecus africanus), researchers have, with few exceptions, consistently stated that early hominins possessed six lumbar vertebrae (Benade, 1990; Latimer and Ward, 1993; Shapiro, 1993; Walker and Leakey, 1993; Sanders, 1995, 1998; Tobias, 1998; Pilbeam, 2004; Rosenman, 2008; McCollum et al., 2010). In 2002, Haeusler et al. demonstrated that these reconstructions were incorrect because they were based on aberrant vertebral morphologies, conflation of multiple definitions (costal versus zygapophyseal) of thoracic and lumbar vertebrae, and the fragmentary nature and associated uncertainty of consecutiveness of fossil vertebral elements in general (see also Williams, 2011). In a new study, Haeusler et al. (2011) describe newly identified vertebra and rib fragments associated with the KNM-WT 15000 juvenile Homo erectus skeleton that reinforce their previous contention (Haeusler et al., 2002) that this specimen has five instead of six lumbar vertebrae, a finding consistent with recent reconstructions of the A. africanus specimens Sts 14 and Stw 431
American Journal of Physical Anthropology | 2009
John D. Polk; Scott A. Williams; Jeffrey V. Peterson
Body mass has been shown in experimental and comparative morphological studies to have a significant effect on joint posture in major limb joints. The generalizability of experimental studies is limited by their use of small sample sizes and limited size ranges. In contrast, while comparative morphological studies often have increased sample sizes, the connection between joint posture and morphological variables is often indirect. The current study infers joint postures for a large sample of primates using an experimentally validated method, and tests whether larger primates use more extended joint postures than smaller species. Postures are inferred through the analysis of patterns of subchondral bone apparent density on the medial femoral condyle. Femora from 94 adult wild-shot individuals of 28 species were included. Apparent density measurements were obtained from CT scans using AMIRA software, and the angular position of the anterior-most extent of the region of maximum apparent density on the medial femoral condyle was recorded. In general, the hypothesis that larger-bodied primates use more extended knee posture was supported, but it should be noted that considerable variation exists, particularly at small body sizes. This indicates that smaller species are less constrained by their body size, and their patterns of apparent density are consistent with a wide range of knee postures. The size-related increase in inferred joint posture was observed in most major groups of primates, and this observation attests to the generalizability of Bieweners model that relates body size and joint posture.