Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott C. Hagen is active.

Publication


Featured researches published by Scott C. Hagen.


Geophysical Research Letters | 2014

Dynamics of sea level rise and coastal flooding on a changing landscape

Matthew V. Bilskie; Scott C. Hagen; Stephen C. Medeiros; Davina L. Passeri

Standard approaches to determining the impacts of sea level rise (SLR) on storm surge flooding employ numerical models reflecting present conditions with modified sea states for a given SLR scenario. In this study, we advance this paradigm by adjusting the model framework so that it reflects not only a change in sea state but also variations to the landscape (morphologic changes and urbanization of coastal cities). We utilize a numerical model of the Mississippi and Alabama coast to simulate the response of hurricane storm surge to changes in sea level, land use/land cover, and land surface elevation for past (1960), present (2005), and future (2050) conditions. The results show that the storm surge response to SLR is dynamic and sensitive to changes in the landscape. We introduce a new modeling framework that includes modification of the landscape when producing storm surge models for future conditions.


Earth’s Future | 2015

The dynamic effects of sea level rise on low‐gradient coastal landscapes: A review

Davina L. Passeri; Scott C. Hagen; Stephen C. Medeiros; Matthew V. Bilskie; Karim Alizad; Dingbao Wang

Coastal responses to sea level rise (SLR) include inundation of wetlands, increased shoreline erosion, and increased flooding during storm events. Hydrodynamic parameters such as tidal ranges, tidal prisms, tidal asymmetries, increased flooding depths and inundation extents during storm events respond nonadditively to SLR. Coastal morphology continually adapts toward equilibrium as sea levels rise, inducing changes in the landscape. Marshes may struggle to keep pace with SLR and rely on sediment accumulation and the availability of suitable uplands for migration. Whether hydrodynamic, morphologic, or ecologic, the impacts of SLR are interrelated. To plan for changes under future sea levels, coastal managers need information and data regarding the potential effects of SLR to make informed decisions for managing human and natural communities. This review examines previous studies that have accounted for the dynamic, nonlinear responses of hydrodynamics, coastal morphology, and marsh ecology to SLR by implementing more complex approaches rather than the simplistic “bathtub” approach. These studies provide an improved understanding of the dynamic effects of SLR on coastal environments and contribute to an overall paradigm shift in how coastal scientists and engineers approach modeling the effects of SLR, transitioning away from implementing the “bathtub” approach. However, it is recommended that future studies implement a synergetic approach that integrates the dynamic interactions between physical and ecological environments to better predict the impacts of SLR on coastal systems.


Earth’s Future | 2016

Contributions of Organic and Inorganic Matter to Sediment Volume and Accretion in Tidal Wetlands at Steady State

James T. Morris; Donald C. Barber; John C. Callaway; Randy Chambers; Scott C. Hagen; Charles S. Hopkinson; Beverly J. Johnson; J. Patrick Megonigal; Scott C. Neubauer; Tiffany G. Troxler; Cathleen Wigand

Abstract A mixing model derived from first principles describes the bulk density (BD) of intertidal wetland sediments as a function of loss on ignition (LOI). The model assumes that the bulk volume of sediment equates to the sum of self‐packing volumes of organic and mineral components or BD = 1/[LOI/k1 + (1‐LOI)/k2], where k1 and k2 are the self‐packing densities of the pure organic and inorganic components, respectively. The model explained 78% of the variability in total BD when fitted to 5075 measurements drawn from 33 wetlands distributed around the conterminous United States. The values of k1 and k2 were estimated to be 0.085 ± 0.0007 g cm−3 and 1.99 ± 0.028 g cm−3, respectively. Based on the fitted organic density (k1) and constrained by primary production, the model suggests that the maximum steady state accretion arising from the sequestration of refractory organic matter is ≤ 0.3 cm yr−1. Thus, tidal peatlands are unlikely to indefinitely survive a higher rate of sea‐level rise in the absence of a significant source of mineral sediment. Application of k2 to a mineral sediment load typical of East and eastern Gulf Coast estuaries gives a vertical accretion rate from inorganic sediment of 0.2 cm yr−1. Total steady state accretion is the sum of the parts and therefore should not be greater than 0.5 cm yr−1 under the assumptions of the model. Accretion rates could deviate from this value depending on variation in plant productivity, root:shoot ratio, suspended sediment concentration, sediment‐capture efficiency, and episodic events.


Earth’s Future | 2016

Dynamic simulation and numerical analysis of hurricane storm surge under sea level rise with geomorphologic changes along the northern Gulf of Mexico

Matthew V. Bilskie; Scott C. Hagen; Karim Alizad; Stephen C. Medeiros; Davina L. Passeri; H.F. Needham; A. Cox

This work outlines a dynamic modeling framework to examine the effects of global climate change, and sea level rise (SLR) in particular, on tropical cyclone-driven storm surge inundation. The methodology, applied across the northern Gulf of Mexico, adapts a present day large-domain, high resolution, tide, wind-wave, and hurricane storm surge model to characterize the potential outlook of the coastal landscape under four SLR scenarios for the year 2100. The modifications include shoreline and barrier island morphology, marsh migration, and land use land cover change. Hydrodynamics of 10 historic hurricanes were simulated through each of the five model configurations (present day and four SLR scenarios). Under SLR, the total inundated land area increased by 87% and developed and agricultural lands by 138% and 189%, respectively. Peak surge increased by as much as 1 m above the applied SLR in some areas, and other regions were subject to a reduction in peak surge, with respect to the applied SLR, indicating a nonlinear response. Analysis of time-series water surface elevation suggests the interaction between SLR and storm surge is nonlinear in time; SLR increased the time of inundation and caused an earlier arrival of the peak surge, which cannot be addressed using a static (“bathtub”) modeling framework. This work supports the paradigm shift to using a dynamic modeling framework to examine the effects of global climate change on coastal inundation. The outcomes have broad implications and ultimately support a better holistic understanding of the coastal system and aid restoration and long-term coastal sustainability.


International Journal of Computational Fluid Dynamics | 2006

Automatic, unstructured mesh generation for tidal calculations in a large domain

Scott C. Hagen; A. K. Zundel; S. Kojima

An automated procedure is described for the production of unstructured, finite element meshes to perform depth-integrated, hydrodynamic calculations in an ocean-scale, two-dimensional domain. Three relatively coarse meshes with nearly identical boundaries are automatically produced by basing internal size guidelines on a localized truncation error analysis that was performed using results from a highly resolved mesh. Qualitative and quantitative comparisons of model performance are made at 150 historical tidal stations. The coarsest mesh is shown to meet or exceed the overall accuracy of the other meshes, including a highly resolved mesh that has over six times as many computational points. The automated procedure quickly and easily produces a computationally efficient and accurate finite element mesh that is reproducible. In addition, the methodology is shown to have potential for assessing the importance and accuracy of and bathymetric details and evaluating historical hydrodynamic data.


Journal of Waterway Port Coastal and Ocean Engineering-asce | 2013

Sea-Level Rise Impact on a Salt Marsh System of the Lower St. Johns River

Scott C. Hagen; James T. Morris; Peter Bacopoulos; John F. Weishampel

AbstractThe impact of sea-level rise on salt marsh sustainability is examined for the lower St. Johns River and associated salt marsh (Spartina alterniflora) system. A two-dimensional hydrodynamic model, forced by tides and sea-level rise, is coupled with a zero-dimensional marsh model to estimate the level of biomass productivity of S. alterniflora across the salt marsh landscape for present day and anticipated future conditions (i.e., when subjected to sea-level rise). The hydrodynamic model results show mean low water (MLW) to be highly spatially variable with a SD of ± 0.18 m and mean high water (MHW) to be less spatially variable with a SD ± 0.03 m. The spatial variability of MLW and MHW is particularly evident within the tidal creeks of the salt marsh. MLW and MHW are sensitive to sea-level rise and respond in a nonlinear fashion (i.e., MLW and MHW elevate by an amount that is not proportional to the level of sea-level rise). The coupled hydrodynamic-marsh model results illustrate the spatial hetero...


Remote Sensing | 2015

Adjusting Lidar-Derived Digital Terrain Models in Coastal Marshes Based on Estimated Aboveground Biomass Density

Stephen C. Medeiros; Scott C. Hagen; John F. Weishampel; James J. Angelo

Digital elevation models (DEMs) derived from airborne lidar are traditionally unreliable in coastal salt marshes due to the inability of the laser to penetrate the dense grasses and reach the underlying soil. To that end, we present a novel processing methodology that uses ASTER Band 2 (visible red), an interferometric SAR (IfSAR) digital surface model, and lidar-derived canopy height to classify biomass density using both a three- class scheme (high, medium and low) and a two-class scheme (high and low). Elevation adjustments associated with these classes using both median and quartile approaches were applied to adjust lidar-derived elevation values closer to true bare earth elevation. The performance of the method was tested on 229 elevation points in the lower Apalachicola River Marsh. The two-class quartile-based adjusted DEM produced the best results, reducing the RMS error in elevation from 0.65 m to 0.40 m, a 38% improvement. The raw mean errors for the lidar DEM and the adjusted DEM were 0.61 ± 0.24 m and 0.32 ± 0.24 m, respectively, thereby reducing the high bias by approximately 49%.


International Journal of Computational Fluid Dynamics | 2002

An Unstructured Mesh Generation Algorithm for Shallow Water Modeling

Scott C. Hagen; Olaf Horstmann; Robert J. Bennett

The successful implementation of a finite element model for computing shallow water flow requires: (1) continuity and momentum equations to describe the physics of the flow, (2) boundary conditions, (3) a discrete surface water region, and (4) an algebraic form of the shallow water equations and boundary conditions. Although steps (1), (2), and (4) may be documented and can be duplicated by multiple scientific investigators, the actual spatial discretization of the domain, i.e. unstructured mesh generation, is not a reproducible process at present. This inability to automatically produce variably-graded meshes that are reliable and efficient hinders fast application of the finite element method to surface water regions. In this paper we present a reproducible approach for generating unstructured, triangular meshes, which combines a hierarchical technique with a localized truncation error analysis as a means to incorporate flow variables and their derivatives. The result is a process that lays the groundwork for the automatic production of finite element meshes that can be used to model shallow water flow accurately and efficiently. The methodology described herein can also be transferred to other modeling applications.


Earth’s Future | 2016

Tidal hydrodynamics under future sea level rise and coastal morphology in the Northern Gulf of Mexico

Davina L. Passeri; Scott C. Hagen; Nathaniel G. Plant; Matthew V. Bilskie; Stephen C. Medeiros; Karim Alizad

This study examines the integrated influence of sea level rise (SLR) and future morphology on tidal hydrodynamics along the Northern Gulf of Mexico (NGOM) coast including seven embayments and three ecologically and economically significant estuaries. A large-domain hydrodynamic model was used to simulate astronomic tides for present and future conditions (circa 2050 and 2100). Future conditions were simulated by imposing four SLR scenarios to alter hydrodynamic boundary conditions and updating shoreline position and dune heights using a probabilistic model that is coupled to SLR. Under the highest SLR scenario, tidal amplitudes within the bays increased as much as 67% (10.0 cm) because of increases in the inlet cross-sectional area. Changes in harmonic constituent phases indicated that tidal propagation was faster in the future scenarios within most of the bays. Maximum tidal velocities increased in all of the bays, especially in Grand Bay where velocities doubled under the highest SLR scenario. In addition, the ratio of the maximum flood to maximum ebb velocity decreased in the future scenarios (i.e., currents became more ebb dominant) by as much as 26% and 39% in Weeks Bay and Apalachicola, respectively. In Grand Bay, the flood-ebb ratio increased (i.e., currents became more flood dominant) by 25% under the lower SLR scenarios, but decreased by 16% under the higher SLR as a result of the offshore barrier islands being overtopped, which altered the tidal prism. Results from this study can inform future storm surge and ecological assessments of SLR, and improve monitoring and management decisions within the NGOM.


Journal of Geophysical Research | 2016

Data and numerical analysis of astronomic tides, wind‐waves, and hurricane storm surge along the northern Gulf of Mexico

Matthew V. Bilskie; Scott C. Hagen; Stephen C. Medeiros; A. T. Cox; M. Salisbury; D. Coggin

The northern Gulf of Mexico (NGOM) is a unique geophysical setting for complex tropical storm-induced hydrodynamic processes that occur across a variety of spatial and temporal scales. Each hurricane includes its own distinctive characteristics and can cause unique and devastating storm surge when it strikes within the intricate geometric setting of the NGOM. While a number of studies have explored hurricane storm surge in the NGOM, few have attempted to describe storm surge and coastal inundation using observed data in conjunction with a single large-domain high-resolution numerical model. To better understand the oceanic and nearshore response to these tropical cyclones, we provide a detailed assessment, based on field measurements and numerical simulation, of the evolution of wind waves, water levels, and currents for Hurricanes Ivan (2004), Dennis (2005), Katrina (2005), and Isaac (2012), with focus on Mississippi, Alabama, and the Florida Panhandle coasts. The developed NGOM3 computational model describes the hydraulic connectivity among the various inlet and bay systems, Gulf Intracoastal Waterway, coastal rivers and adjacent marsh, and built infrastructure along the coastal floodplain. The outcome is a better understanding of the storm surge generating mechanisms and interactions among hurricane characteristics and the NGOMs geophysical configuration. The numerical analysis and observed data explain the ∼2 m/s hurricane-induced geostrophic currents across the continental shelf, a 6 m/s outflow current during Ivan, the hurricane-induced coastal Kelvin wave along the shelf, and for the first time a wealth of measured data and a detailed numerical simulation was performed and was presented for Isaac.

Collaboration


Dive into the Scott C. Hagen's collaboration.

Top Co-Authors

Avatar

Stephen C. Medeiros

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Bacopoulos

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Dingbao Wang

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Davina L. Passeri

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

John F. Weishampel

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Karim Alizad

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Denise E. DeLorme

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

James T. Morris

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Sonia H. Stephens

University of Central Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge