Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott D. Dufresne is active.

Publication


Featured researches published by Scott D. Dufresne.


Journal of Clinical Investigation | 1999

Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice

Jørgen F. P. Wojtaszewski; Yasuki Higaki; Michael F. Hirshman; M. Dodson Michael; Scott D. Dufresne; C. Ronald Kahn; Laurie J. Goodyear

Physical exercise promotes glucose uptake into skeletal muscle and makes the working muscles more sensitive to insulin. To understand the role of insulin receptor (IR) signaling in these responses, we studied the effects of exercise and insulin on skeletal muscle glucose metabolism and insulin signaling in mice lacking insulin receptors specifically in muscle. Muscle-specific insulin receptor knockout (MIRKO) mice had normal resting 2-deoxy-glucose (2DG) uptake in soleus muscles but had no significant response to insulin. Despite this, MIRKO mice displayed normal exercise-stimulated 2DG uptake and a normal synergistic activation of muscle 2DG uptake with the combination of exercise plus insulin. Glycogen content and glycogen synthase activity in resting muscle were normal in MIRKO mice, and exercise, but not insulin, increased glycogen synthase activity. Insulin, exercise, and the combination of exercise plus insulin did not increase IR tyrosine phosphorylation or phosphatidylinositol 3-kinase activity in MIRKO muscle. In contrast, insulin alone produced a small activation of Akt and glycogen synthase kinase-3 in MIRKO mice, and prior exercise markedly enhanced this insulin effect. In conclusion, normal expression of muscle insulin receptors is not needed for the exercise-mediated increase in glucose uptake and glycogen synthase activity in vivo. The synergistic activation of glucose transport with exercise plus insulin is retained in MIRKO mice, suggesting a phenomenon mediated by nonmuscle cells or by downstream signaling events.


Journal of Clinical Investigation | 1997

Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle.

Doron Aronson; M A Violan; Scott D. Dufresne; David Zangen; Roger A. Fielding; Laurie J. Goodyear

Physical exercise can cause marked alterations in the structure and function of human skeletal muscle. However, little is known about the specific signaling molecules and pathways that enable exercise to modulate cellular processes in skeletal muscle. The mitogen-activated protein kinase (MAPK) cascade is a major signaling system by which cells transduce extracellular signals into intracellular responses. We tested the hypothesis that a single bout of exercise activates the MAPK signaling pathway. Needle biopsies of vastus lateralis muscle were taken from nine subjects at rest and after 60 min of cycle ergometer exercise. In all subjects, exercise increased MAPK phosphorylation, and the activity of its downstream substrate, the p90 ribosomal S6 kinase 2. Furthermore, exercise increased the activities of the upstream regulators of MAPK, MAP kinase kinase, and Raf-1. When two additional subjects were studied using a one-legged exercise protocol, MAPK phosphorylation and p90 ribosomal S6 kinase 2, MAP kinase kinase 1, and Raf-1 activities were increased only in the exercising leg. These studies demonstrate that exercise activates the MAPK cascade in human skeletal muscle and that this stimulation is primarily a local, tissue-specific phenomenon, rather than a systemic response to exercise. These findings suggest that the MAPK pathway may modulate cellular processes that occur in skeletal muscle in response to exercise.


American Journal of Physiology-endocrinology and Metabolism | 1999

Exercise and insulin cause GLUT-4 translocation in human skeletal muscle.

Anders Thorell; Michael F. Hirshman; Jonas Nygren; Lennart Jorfeldt; Jørgen F. P. Wojtaszewski; Scott D. Dufresne; Edward S. Horton; Olle Ljungqvist; Laurie J. Goodyear

Studies in rodents have established that GLUT-4 translocation is the major mechanism by which insulin and exercise increase glucose uptake in skeletal muscle. In contrast, much less is known about the translocation phenomenon in human skeletal muscle. In the current study, nine healthy volunteers were studied on two different days. On one day, biopsies of vastus lateralis muscle were taken before and after a 2-h euglycemic-hyperinsulinemic clamp (0.8 mU ⋅ kg-1 ⋅ min-1). On another day, subjects exercised for 60 min at 70% of maximal oxygen consumption (V˙o 2 max), a biopsy was obtained, and the same clamp and biopsy procedure was performed as that during the previous experiment. Compared with insulin treatment alone, glucose infusion rates were significantly increased during the postexercise clamp for the periods 0-30 min, 30-60 min, and 60-90 min, but not during the last 30 min of the clamp. Plasma membrane GLUT-4 content was significantly increased in response to physiological hyperinsulinemia (32% above rest), exercise (35%), and the combination of exercise plus insulin (44%). Phosphorylation of Akt, a putative signaling intermediary for GLUT-4 translocation, was increased in response to insulin (640% above rest), exercise (280%), and exercise plus insulin (1,000%). These data demonstrate that two normal physiological conditions, moderate intensity exercise and physiological hyperinsulinemia ∼56 μU/ml, cause GLUT-4 translocation and Akt phosphorylation in human skeletal muscle.Studies in rodents have established that GLUT-4 translocation is the major mechanism by which insulin and exercise increase glucose uptake in skeletal muscle. In contrast, much less is known about the translocation phenomenon in human skeletal muscle. In the current study, nine healthy volunteers were studied on two different days. On one day, biopsies of vastus lateralis muscle were taken before and after a 2-h euglycemic-hyperinsulinemic clamp (0.8 mU. kg(-1). min(-1)). On another day, subjects exercised for 60 min at 70% of maximal oxygen consumption (VO(2 max)), a biopsy was obtained, and the same clamp and biopsy procedure was performed as that during the previous experiment. Compared with insulin treatment alone, glucose infusion rates were significantly increased during the postexercise clamp for the periods 0-30 min, 30-60 min, and 60-90 min, but not during the last 30 min of the clamp. Plasma membrane GLUT-4 content was significantly increased in response to physiological hyperinsulinemia (32% above rest), exercise (35%), and the combination of exercise plus insulin (44%). Phosphorylation of Akt, a putative signaling intermediary for GLUT-4 translocation, was increased in response to insulin (640% above rest), exercise (280%), and exercise plus insulin (1,000%). These data demonstrate that two normal physiological conditions, moderate intensity exercise and physiological hyperinsulinemia approximately 56 microU/ml, cause GLUT-4 translocation and Akt phosphorylation in human skeletal muscle.


Molecular and Cellular Biology | 2001

Altered Extracellular Signal-Regulated Kinase Signaling and Glycogen Metabolism in Skeletal Muscle from p90 Ribosomal S6 Kinase 2 Knockout Mice

Scott D. Dufresne; Christian Bjørbæk; Karim El-Haschimi; Yi Zhao; William G. Aschenbach; David E. Moller; Laurie J. Goodyear

ABSTRACT The p90 ribosomal S6 kinase (RSK), a cytosolic substrate for the extracellular signal-regulated kinase (ERK), is involved in transcriptional regulation, and one isoform (RSK2) has been implicated in the activation of glycogen synthase by insulin. To determine RSK2 function in vivo, mice lacking a functional rsk2 gene were generated and studied in response to insulin and exercise, two potent stimulators of the ERK cascade in skeletal muscle. RSK2 knockout (KO) mice weigh 10% less and are 14% shorter than wild-type (WT) mice. They also have impaired learning and coordination. Hindlimb skeletal muscles were obtained from mice 10, 15, or 30 min after insulin injection or immediately after strenuous treadmill exercise for 60 min. While insulin and exercise significantly increased ERK phosphorylation in skeletal muscle from both WT and KO mice, the increases were twofold greater in the KO animals. This occurred despite 27% lower ERK2 protein expression in skeletal muscle of KO mice. KO mice had 18% less muscle glycogen in the fasted basal state, and insulin increased glycogen synthase activity more in KO than WT mice. The enhanced insulin-stimulated increases in ERK and glycogen synthase activities in KO mice were not associated with higher insulin receptor or with IRS1 tyrosine phosphorylation or with IRS1 binding to phosphatidylinositol 3-kinase. However, insulin-stimulated serine phosphorylation of Akt was significantly higher in the KO animals. c-fos mRNA was increased similarly in muscle from WT and KO mice in response to insulin (2.5-fold) and exercise (15-fold). In conclusion, RSK2 likely plays a major role in feedback inhibition of the ERK pathway in skeletal muscle. Furthermore, RSK2 is not required for activation of muscle glycogen synthase by insulin but may indirectly modulate muscle glycogen synthase activity and/or glycogen content by other mechanisms, possibly through regulation of Akt. RSK2 knockout mice may be a good animal model for the study of Coffin-Lowry syndrome.


American Journal of Physiology-endocrinology and Metabolism | 1999

Differential regulation of MAP kinase, p70S6K, and Akt by contraction and insulin in rat skeletal muscle

Daniel J. Sherwood; Scott D. Dufresne; Jeffrey F. Markuns; Bentley Cheatham; David E. Moller; Doron Aronson; Laurie J. Goodyear

To study the effects of contractile activity on mitogen-activated protein kinase (MAP kinase), p70 S6 kinase (p70(S6K)), and Akt kinase signaling in rat skeletal muscle, hindlimb muscles were contracted by electrical stimulation of the sciatic nerve for periods of 15 s to 60 min. Contraction resulted in a rapid and transient activation of Raf-1 and MAP kinase kinase 1, a rapid and more sustained activation of MAP kinase and the 90-kDa ribosomal S6 kinase 2, and a dramatic increase in c-fos mRNA expression. Contraction also resulted in an apparent increase in the association of Raf-1 with p21Ras, although stimulation of MAP kinase signaling occurred independent of Shc, IRS1, and IRS2 tyrosine phosphorylation or the formation of Shc/Grb2 or IRS1/Grb2 complexes. Insulin was considerably less effective than contraction in stimulating the MAP kinase pathway. However, insulin, but not contraction, increased p70(S6K) and Akt activities in the muscle. These results demonstrate that contraction-induced activation of the MAP kinase pathway is independent of proximal steps in insulin and/or growth factor-mediated signaling, and that contraction and insulin have discordant effects with respect to the activation of the MAP kinase pathway vs. p70(S6K) and Akt. Of the numerous stimulators of MAP kinase in skeletal muscle, contractile activity emerges as a potent and physiologically relevant activator of MAP kinase signaling, and thus activation of this pathway is likely to be an important molecular mechanism by which skeletal muscle cells transduce mechanical and/or biochemical signals into downstream biological responses.To study the effects of contractile activity on mitogen-activated protein kinase (MAP kinase), p70 S6 kinase (p70S6K), and Akt kinase signaling in rat skeletal muscle, hindlimb muscles were contracted by electrical stimulation of the sciatic nerve for periods of 15 s to 60 min. Contraction resulted in a rapid and transient activation of Raf-1 and MAP kinase kinase 1, a rapid and more sustained activation of MAP kinase and the 90-kDa ribosomal S6 kinase 2, and a dramatic increase in c- fos mRNA expression. Contraction also resulted in an apparent increase in the association of Raf-1 with p21Ras, although stimulation of MAP kinase signaling occurred independent of Shc, IRS1, and IRS2 tyrosine phosphorylation or the formation of Shc/Grb2 or IRS1/Grb2 complexes. Insulin was considerably less effective than contraction in stimulating the MAP kinase pathway. However, insulin, but not contraction, increased p70S6K and Akt activities in the muscle. These results demonstrate that contraction-induced activation of the MAP kinase pathway is independent of proximal steps in insulin and/or growth factor-mediated signaling, and that contraction and insulin have discordant effects with respect to the activation of the MAP kinase pathway vs. p70S6K and Akt. Of the numerous stimulators of MAP kinase in skeletal muscle, contractile activity emerges as a potent and physiologically relevant activator of MAP kinase signaling, and thus activation of this pathway is likely to be an important molecular mechanism by which skeletal muscle cells transduce mechanical and/or biochemical signals into downstream biological responses.


Journal of Biological Chemistry | 1997

Contractile activity stimulates the c-Jun NH2-terminal kinase pathway in rat skeletal muscle.

Doron Aronson; Scott D. Dufresne; Laurie J. Goodyear

Contractile activity plays a critical role in the regulation of gene transcription in skeletal muscle, which in turn determines muscle functional capabilities. However, little is known about the molecular signaling mechanisms that convert contractile activity into gene regulatory responses in skeletal muscle. In the current study we determined the effects of contractile activityin vivo on the c-Jun NH2-terminal kinase (JNK) pathway, a signaling cascade that has been implicated in the regulation of transcription. Electrical stimulation of the sciatic nerve to produce contractions in anaesthetized rats increased JNK activity by up to 7-fold above basal. Maximal enzyme activity occurred at 15 min of contraction and remained elevated at 60 min of contraction. The upstream activators of JNK, the mitogen-activated protein kinase kinase 4 and the mitogen-activated protein kinase kinase kinase 1 followed a similar time course of activation in response to contractile activity. In contrast, contraction induced a rapid and transient activation of the extracellular-regulated kinase pathway, indicating that the regulation of JNK signaling is distinct from that of extracellular-regulated kinase. The activation of the JNK signaling cascade was temporally associated with an increased expression of c-jun mRNA. These results demonstrate that contractile activity regulates JNK activity in skeletal muscle and suggest that activation of JNK may regulate contraction-induced gene expression in skeletal muscle.


American Journal of Physiology-cell Physiology | 1999

Skeletal muscle contractile activity in vitro stimulates mitogen-activated protein kinase signaling

Tatsuya Hayashi; Michael F. Hirshman; Scott D. Dufresne; Laurie J. Goodyear

Physical exercise is a potent stimulator of mitogen-activated protein (MAP) kinase signaling. To determine if this activation is secondary to systemic responses to exercise or due to muscle contractile activity per se, an isolated muscle preparation was developed. Contractile activity in vitro significantly increased p44MAPK and p42MAPK phosphorylation by 2.9- and 2.4-fold, respectively. Contraction-stimulated MAP kinase phosphorylation was not decreased in the presence ofd-tubocurarine or calphostin C, suggesting that neither neurotransmitter release nor diacylglycerol-sensitive protein kinase C mediates the contraction-induced activation of this signaling cascade. However, PD-98059, an inhibitor of MAP kinase kinase (MEK), inhibited the contraction-induced increases in MAP kinase phosphorylation. PD-98059 did not alter contraction-induced increases in glucose uptake or glycogen synthase activity, demonstrating that MAP kinase signaling is not necessary for these important metabolic effects of contractile activity in skeletal muscle. These data suggest that contractile activity of the skeletal muscle fibers per se, and not responses to neurotransmitter release, hormones, or other systemic factors, is responsible for the stimulation of MAP kinase signaling with physical exercise.Physical exercise is a potent stimulator of mitogen-activated protein (MAP) kinase signaling. To determine if this activation is secondary to systemic responses to exercise or due to muscle contractile activity per se, an isolated muscle preparation was developed. Contractile activity in vitro significantly increased p44(MAPK) and p42(MAPK) phosphorylation by 2.9- and 2.4-fold, respectively. Contraction-stimulated MAP kinase phosphorylation was not decreased in the presence of D-tubocurarine or calphostin C, suggesting that neither neurotransmitter release nor diacylglycerol-sensitive protein kinase C mediates the contraction-induced activation of this signaling cascade. However, PD-98059, an inhibitor of MAP kinase kinase (MEK), inhibited the contraction-induced increases in MAP kinase phosphorylation. PD-98059 did not alter contraction-induced increases in glucose uptake or glycogen synthase activity, demonstrating that MAP kinase signaling is not necessary for these important metabolic effects of contractile activity in skeletal muscle. These data suggest that contractile activity of the skeletal muscle fibers per se, and not responses to neurotransmitter release, hormones, or other systemic factors, is responsible for the stimulation of MAP kinase signaling with physical exercise.


Journal of Biological Chemistry | 2001

The muscle-specific protein phosphatase PP1G/R(GL)(G(M))is essential for activation of glycogen synthase by exercise.

William G. Aschenbach; Yoichi Suzuki; Kristine Breeden; Clara Prats; Michael F. Hirshman; Scott D. Dufresne; Kei Sakamoto; Pier Giuseppe Vilardo; Marcella Steele; Jong-Hwa Kim; Shao-liang Jing; Laurie J. Goodyear


Biochemical and Biophysical Research Communications | 1998

Exercise stimulates c-Jun NH2 kinase activity and c-Jun transcriptional activity in human skeletal muscle

Doron Aronson; Marni D. Boppart; Scott D. Dufresne; Roger A. Fielding; Laurie J. Goodyear


American Journal of Physiology-cell Physiology | 2004

Overexpression or ablation of JNK in skeletal muscle has no effect on glycogen synthase activity

Nobuharu Fujii; Marni D. Boppart; Scott D. Dufresne; Patricia F. Crowley; Alison C. Jozsi; Kei Sakamoto; Haiyan Yu; Williams G. Aschenbach; Shokei Kim; Hitoshi Miyazaki; Liangyou Rui; Morris F. White; Michael F. Hirshman; Laurie J. Goodyear

Collaboration


Dive into the Scott D. Dufresne's collaboration.

Top Co-Authors

Avatar

Laurie J. Goodyear

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doron Aronson

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Kei Sakamoto

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Bjørbæk

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haiyan Yu

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge