Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott D. Edmondson is active.

Publication


Featured researches published by Scott D. Edmondson.


Bioorganic & Medicinal Chemistry Letters | 2008

Fluoroolefins as amide bond mimics in dipeptidyl peptidase IV inhibitors

Scott D. Edmondson; Lan Wei; Jinyou Xu; Jackie Shang; Shiyao Xu; Jianmei Pang; Ashok Chaudhary; Dennis C. Dean; Huaibing He; Barbara Leiting; Kathryn A. Lyons; Reshma A. Patel; Sangita B. Patel; Giovanna Scapin; Joseph K. Wu; Maria Beconi; Nancy A. Thornberry; Ann E. Weber

The synthesis, selectivity, rat pharmacokinetic profile, and drug metabolism profiles of a series of potent fluoroolefin-derived DPP-4 inhibitors (4) are reported. A radiolabeled fluoroolefin 33 was shown to possess a high propensity to form reactive metabolites, thus revealing a potential liability for this class of DPP-4 inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2009

Aminopiperidine-fused imidazoles as dipeptidyl peptidase-IV inhibitors

Scott D. Edmondson; Anthony Mastracchio; Jason M. Cox; George J. Eiermann; Huaibing He; Kathryn A. Lyons; Reshma A. Patel; Sangita B. Patel; Aleksandr Petrov; Giovanna Scapin; Joseph K. Wu; Shiyao Xu; Bing Zhu; Nancy A. Thornberry; Ranabir Sinha Roy; Ann E. Weber

A new series of DPP-4 inhibitors derived from piperidine-fused benzimidazoles and imidazopyridines is described. Optimization of this class of DPP-4 inhibitors led to the discovery of imidazopyridine 34. The potency, selectivity, cross-species DMPK profiles, and in vivo efficacy of 34 is reported.


Bioorganic & Medicinal Chemistry Letters | 2008

2-Substituted piperazine-derived imidazole carboxamides as potent and selective CCK1R agonists for the treatment of obesity.

Richard A. Berger; Cheng Zhu; Alexa Hansen; Bart Harper; Zhesheng Chen; Tom G. Holt; James Hubert; Susan J. Lee; Jie Pan; Su Qian; Marc L. Reitman; Alison M. Strack; Drew T. Weingarth; Michael Wolff; Douglas J. MacNeil; Ann E. Weber; Scott D. Edmondson

The discovery and structure-activity relationship of 1,2-diarylimidazole piperazine carboxamides bearing polar side chains as potent and selective cholecystokinin 1 receptor (CCK1R) agonists are described. Optimization of this series resulted in the discovery of isopropyl carboxamide 40, a CCK1R agonist with sub-nanomolar functional and binding activity as well as excellent potency in a mouse overnight food intake reduction assay.


Journal of Medicinal Chemistry | 2014

Design, Synthesis, and Evaluation of Conformationally Restricted Acetanilides as Potent and Selective β3 Adrenergic Receptor Agonists for the Treatment of Overactive Bladder

Christopher Richard Moyes; Richard A. Berger; Stephen D. Goble; Bart Harper; Dong-Ming Shen; Liping Wang; Alka Bansal; Patricia Brown; Airu S. Chen; Karen H. Dingley; Jerry Di Salvo; Aileen Fitzmaurice; Loise Gichuru; Amanda L. Hurley; Nina Jochnowitz; Randall R. Miller; Shruty Mistry; Hiroshi Nagabukuro; Gino Salituro; Anthony Sanfiz; Andra S. Stevenson; Katherine Villa; Beata Zamlynny; Mary Struthers; Ann E. Weber; Scott D. Edmondson

A series of conformationally restricted acetanilides were synthesized and evaluated as β3-adrenergic receptor agonists (β3-AR) for the treatment of overactive bladder (OAB). Optimization studies identified a five-membered ring as the preferred conformational lock of the acetanilide. Further optimization of both the aromatic and thiazole regions led to compounds such as 19 and 29, which have a good balance of potency and selectivity. These compounds have significantly reduced intrinsic clearance compared to our initial series of pyridylethanolamine β3-AR agonists and thus have improved unbound drug exposures. Both analogues demonstrated dose dependent β3-AR mediated responses in a rat bladder hyperactivity model.


Journal of Medicinal Chemistry | 2016

Discovery of Vibegron: A Potent and Selective β3 Adrenergic Receptor Agonist for the Treatment of Overactive Bladder.

Scott D. Edmondson; Cheng Zhu; Nam Fung Kar; Jerry Di Salvo; Hiroshi Nagabukuro; Beatrice Sacre-Salem; Karen H. Dingley; Richard A. Berger; Stephen D. Goble; Gregori J. Morriello; Bart Harper; Christopher Richard Moyes; Dong-Ming Shen; Liping Wang; Richard G. Ball; Aileen Fitzmaurice; Tara L. Frenkl; Loise Gichuru; Sookhee Ha; Amanda L. Hurley; Nina Jochnowitz; Dorothy Levorse; Shruty Mistry; Randy R. Miller; James Ormes; Gino Salituro; Anthony Sanfiz; Andra S. Stevenson; Katherine Villa; Beata Zamlynny

The discovery of vibegron, a potent and selective human β3-AR agonist for the treatment of overactive bladder (OAB), is described. An early-generation clinical β3-AR agonist MK-0634 (3) exhibited efficacy in humans for the treatment of OAB, but development was discontinued due to unacceptable structure-based toxicity in preclinical species. Optimization of a series of second-generation pyrrolidine-derived β3-AR agonists included reducing the risk for phospholipidosis, the risk of formation of disproportionate human metabolites, and the risk of formation of high levels of circulating metabolites in preclinical species. These efforts resulted in the discovery of vibegron, which possesses improved druglike properties and an overall superior preclinical profile compared to MK-0634. Structure-activity relationships leading to the discovery of vibegron and a summary of its preclinical profile are described.


Bioorganic & Medicinal Chemistry Letters | 2008

Discovery of imidazole carboxamides as potent and selective CCK1R agonists

Cheng Zhu; Alexa Hansen; Thomas J. Bateman; Zhesheng Chen; Tom G. Holt; James Hubert; Bindhu V. Karanam; Susan J. Lee; Jie Pan; Su Qian; Vijay Bhasker G. Reddy; Marc L. Reitman; Alison M. Strack; Vincent Tong; Drew T. Weingarth; Michael Wolff; Doug MacNeil; Ann E. Weber; Joseph L. Duffy; Scott D. Edmondson

High-throughput screening revealed diaryl pyrazole 3 as a selective albeit modest cholecystokinin 1 receptor (CCK1R) agonist. SAR studies led to the discovery and optimization of a novel class of 1,2-diaryl imidazole carboxamides. Compound 44, which was profiled extensively, showed good in vivo mouse gallbladder emptying (mGBE) and lean mouse overnight food intake (ONFI) reduction activities.


Bioorganic & Medicinal Chemistry Letters | 2010

Heterocyclic acetamide and benzamide derivatives as potent and selective β3-adrenergic receptor agonists with improved rodent pharmacokinetic profiles

Stephen D. Goble; Liping Wang; K. Lulu Howell; Alka Bansal; Richard A. Berger; Linda Brockunier; Jerry DiSalvo; Scott D. Feighner; Bart Harper; Jiafang He; Amanda L. Hurley; Donna L. Hreniuk; Emma R. Parmee; Michael A. Robbins; Gino Salituro; Anthony Sanfiz; Eric Streckfuss; Eloisa Watkins; Ann E. Weber; Mary Struthers; Scott D. Edmondson

A series of amide derived beta(3)-adrenergic receptor (AR) agonists is described. The discovery and optimization of several series of compounds derived from 1, is used to lay the SAR foundation for second generation beta(3)-AR agonists for the treatment of overactive bladder.


Journal of Pharmacology and Experimental Therapeutics | 2017

Pharmacological Characterization of a Novel Beta 3 Adrenergic Agonist, Vibegron: Evaluation of Antimuscarinic Receptor Selectivity for Combination Therapy for Overactive Bladder

J. Di Salvo; Hiroshi Nagabukuro; L. A. Wickham; C. Abbadie; Julie A. DeMartino; Aileen Fitzmaurice; Loise Gichuru; A. Kulick; M. J. Donnelly; Nina Jochnowitz; Amanda L. Hurley; A. Pereira; Anthony Sanfiz; G. Veronin; Katherine Villa; J. Woods; Beata Zamlynny; Emanuel Zycband; Gino Salituro; Tara L. Frenkl; Ann E. Weber; Scott D. Edmondson; Mary Struthers

Although the physiologic role of muscarinic receptors in bladder function and the therapeutic efficacy of muscarinic antagonists for the treatment of overactive bladder are well established, the role of β3-adrenergic receptors (β3ARs) and their potential as therapeutics is just emerging. In this manuscript, we characterized the pharmacology of a novel β3AR agonist vibegron (MK-4618, KRP-114V) and explored mechanistic interactions of β3AR agonism and muscarinic antagonism in urinary bladder function. Vibegron is a potent, selective full β3AR agonist across species, and it dose dependently increased bladder capacity, decreased micturition pressure, and increased bladder compliance in rhesus monkeys. The relaxation effect of vibegron was enhanced when combined with muscarinic antagonists, but differentially influenced by muscarinic receptor subtype selectivity. The effect was greater when vibegron was co-administered with tolterodine, a nonselective antagonist, compared with coadministration with darifenacin, a selective M3 antagonist. Furthermore, a synergistic effect for bladder strip relaxation was observed with the combination of a β3AR agonist and tolterodine in contrast to simple additivity with darifenacin. To determine expression in rhesus bladder, we employed a novel β3AR agonist probe, [3H]MRL-037, that selectively labels β3 receptors in both urothelium and detrusor smooth muscle. Vibegron administration caused a dose-dependent increase in circulating glycerol and fatty acid levels in rhesus and rat in vivo, suggesting these circulating lipids can be surrogate biomarkers. The translation of our observation to the clinic has yet to be determined, but the combination of β3AR agonists with M2/M3 antimuscarinics has the potential to redefine the standard of care for the pharmacological treatment of overactive bladder.


ACS Medicinal Chemistry Letters | 2017

Discovery of Chromane Propionic Acid Analogues as Selective Agonists of GPR120 with in Vivo Activity in Rodents

Gregory L. Adams; Francisco Velazquez; Charles Lee Jayne; Unmesh G. Shah; Shouwu Miao; Eric R. Ashley; Maria Madeira; Taro E. Akiyama; Jerry Di Salvo; Takao Suzuki; Nengxue Wang; Quang Truong; Eric J. Gilbert; Dan Zhou; Andreas Verras; Melissa Kirkland; Michele Pachanski; Maryann Powles; Wu Yin; Feroze Ujjainwalla; Srikanth Venkatraman; Scott D. Edmondson

GPR120 (FFAR4) is a fatty acid sensing G protein coupled receptor (GPCR) that has been identified as a target for possible treatment of type 2 diabetes. A selective activator of GPR120 containing a chromane scaffold has been designed, synthesized, and evaluated in vivo. Results of these efforts suggest that chromane propionic acid 18 is a suitable tool molecule for further animal studies. Compound 18 is selective over the closely related target GPR40 (FFAR1), has a clean off-target profile, demonstrates suitable pharmacokinetic properties, and has been evaluated in wild-type/knockout GPR120 mouse oGTT studies.


Bioorganic & Medicinal Chemistry Letters | 2011

Design of a novel pyrrolidine scaffold utilized in the discovery of potent and selective human β3 adrenergic receptor agonists.

Gregori J. Morriello; Harvey R. Wendt; Alka Bansal; Jerry Di Salvo; Scott D. Feighner; Jiafang He; Amanda L. Hurley; Donna L. Hreniuk; Gino Salituro; Marat Vijay Reddy; Sheila M. Galloway; Katherine K. McGettigan; George M. Laws; Crystal McKnight; George A. Doss; Nancy N. Tsou; Regina M. Black; Judy Morris; Richard G. Ball; Anthony Sanfiz; Eric Streckfuss; Mary Struthers; Scott D. Edmondson

A novel class of human β(3)-adrenergic receptor agonists was designed in effort to improve selectivity and metabolic stability versus previous disclosed β(3)-AR agonists. As observed, many of the β(3)-AR agonists seem to need the acyclic ethanolamine core for agonist activity. We have synthesized derivatives that constrained this moiety by introduction of a pyrrolidine. This unique modification maintains human β(3) functional potency with improved selectivity versus ancillary targets and also eliminates the possibility of the same oxidative metabolites formed from cleavage of the N-C bond of the ethanolamine. Compound 39 exhibited excellent functional β(3) agonist potency across species with good pharmacokinetic properties in rat, dog, and rhesus monkeys. Early de-risking of this novel pyrrolidine core (44) via full AMES study supports further research into various new β(3)-AR agonists containing the pyrrolidine moiety.

Collaboration


Dive into the Scott D. Edmondson's collaboration.

Researchain Logo
Decentralizing Knowledge