Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott D. Kobayashi is active.

Publication


Featured researches published by Scott D. Kobayashi.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils

Scott D. Kobayashi; Kevin R. Braughton; Adeline R. Whitney; Jovanka M. Voyich; Tom G. Schwan; James M. Musser; Frank R. DeLeo

Human polymorphonuclear leukocytes (PMNs or neutrophils) are essential to the innate immune response against bacterial pathogens. Recent evidence suggests that PMN apoptosis facilitates resolution of inflammation during bacterial infection. Although progress has been made toward understanding apoptosis in neutrophils, very little is known about transcriptional regulation of this process during bacterial infection. To gain insight into the molecular processes that facilitate resolution of infection, we measured global changes in PMN gene expression during phagocytosis of a diverse group of bacterial pathogens. Genes encoding key effectors of apoptosis were up-regulated, and receptors critical to innate immune function were down-regulated during apoptosis induced by phagocytosis of Burkholderia cepacia, Borrelia hermsii, Listeria monocytogenes, Staphylococcus aureus, and Streptococcus pyogenes. Importantly, we identified genes that comprise a common apoptosis differentiation program in human PMNs after phagocytosis of pathogenic bacteria. Unexpectedly, phagocytosis of Str. pyogenes induced changes in neutrophil gene expression not observed with other pathogens tested, including down-regulation of 21 genes involved in responses to IFN. Compared with other bacteria, PMN apoptosis was significantly accelerated by Str. pyogenes and was followed by necrosis. Thus, we hypothesize that there are two fundamental outcomes for the interaction of bacterial pathogens with neutrophils: (i) phagocytosis of bacteria induces an apoptosis differentiation program in human PMNs that contributes to resolution of bacterial infection, or (ii) phagocytosis of microorganisms such as Str. pyogenes alters the apoptosis differentiation program in neutrophils, resulting in pathogen survival and disease.


The Journal of Infectious Diseases | 2004

Transmission of Yersinia pestis from an infectious biofilm in the flea vector

Clayton O. Jarrett; Eszter Deak; Karen E. Isherwood; Petra Cf Oyston; Elizabeth R. Fischer; Adeline R. Whitney; Scott D. Kobayashi; Frank R. DeLeo; B. Joseph Hinnebusch

Transmission of plague by fleas depends on infection of the proventricular valve in the insects foregut by a dense aggregate of Yersinia pestis. Proventricular infection requires the Y. pestis hemin storage (hms) genes; here, we show that the hms genes are also required to produce an extracellular matrix and a biofilm in vitro, supporting the hypothesis that a transmissible infection in the flea depends on the development of a biofilm on the hydrophobic, acellular surface of spines that line the interior of the proventriculus. The development of biofilm and proventricular infection did not depend on the 3 Y. pestis quorum-sensing systems. The extracellular matrix enveloping the Y. pestis biofilm in the flea appeared to incorporate components from the fleas blood meal, and bacteria released from the biofilm were more resistant to human polymorphonuclear leukocytes than were in vitro-grown Y. pestis. Enabling arthropod-borne transmission represents a novel function of a bacterial biofilm.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Global changes in gene expression by human polymorphonuclear leukocytes during receptor-mediated phagocytosis: Cell fate is regulated at the level of gene expression

Scott D. Kobayashi; Jovanka M. Voyich; Cassandra L. Buhl; Robert M. Stahl; Frank R. DeLeo

Phagocytes are a critical component of the innate immune response in humans and eliminate invading microorganisms through a process known as phagocytosis. Two distinct receptor-linked phagocytic pathways, one with Ab receptors (FcRs; FcR, Fc receptor) and the other complement receptors (CRs), mediate binding and ingestion of pathogens by human polymorphonuclear leukocytes (PMNs). Although progress has been made toward defining complex signal transduction processes that underlie phagocytosis in each pathway, very little is known about gene regulation during or after phagocytosis. Therefore, we used human oligonucleotide microarrays to identify changes in expression of 12,561 genes accompanying FcR- and CR-mediated phagocytosis. Eighty-four percent of 279 differentially expressed genes were induced or repressed 90 min after ingestion of Ab- and/or complement-opsonized particles. Unexpectedly, more than 30 of these genes encoded proteins involved in at least three distinct apoptotic pathways. Ninety-four differentially expressed cell fate-related genes were identified between 180 and 360 min after phagocytosis and most were induced or repressed by PMNs activated through both receptors simultaneously. By using flow cytometry, we found that FcR- and CR-mediated phagocytosis each promoted programmed cell death in human PMNs; however, phagocytosis mediated by the combination of FcRs and CRs induced apoptosis earlier than that by either receptor alone. Our results reveal distinct patterns of receptor-mediated gene expression that define complex inducible apoptotic pathways in activated PMNs. Most significantly, we discovered that programmed cell death is regulated at the level of gene expression. Thus, we hypothesize that gene regulation in PMNs facilitates resolution of inflammatory responses.


PLOS ONE | 2010

Identification of a Novel Staphylococcus aureus Two- Component Leukotoxin Using Cell Surface Proteomics

Christy L. Ventura; Natalia Malachowa; Carl H. Hammer; Glenn Nardone; Mary Ann Robinson; Scott D. Kobayashi; Frank R. DeLeo

Staphylococcus aureus is a prominent human pathogen and leading cause of bacterial infection in hospitals and the community. Community-associated methicillin-resistant S. aureus (CA-MRSA) strains such as USA300 are highly virulent and, unlike hospital strains, often cause disease in otherwise healthy individuals. The enhanced virulence of CA-MRSA is based in part on increased ability to produce high levels of secreted molecules that facilitate evasion of the innate immune response. Although progress has been made, the factors that contribute to CA-MRSA virulence are incompletely defined. We analyzed the cell surface proteome (surfome) of USA300 strain LAC to better understand extracellular factors that contribute to the enhanced virulence phenotype. A total of 113 identified proteins were associated with the surface of USA300 during the late-exponential phase of growth in vitro. Protein A was the most abundant surface molecule of USA300, as indicated by combined Mascot score following analysis of peptides by tandem mass spectrometry. Unexpectedly, we identified a previously uncharacterized two-component leukotoxin–herein named LukS-H and LukF-G (LukGH)-as two of the most abundant surface-associated proteins of USA300. Rabbit antibody specific for LukG indicated it was also freely secreted by USA300 into culture media. We used wild-type and isogenic lukGH deletion strains of USA300 in combination with human PMN pore formation and lysis assays to identify this molecule as a leukotoxin. Moreover, LukGH synergized with PVL to enhance lysis of human PMNs in vitro, and contributed to lysis of PMNs after phagocytosis. We conclude LukGH is a novel two-component leukotoxin with cytolytic activity toward neutrophils, and thus potentially contributes to S. aureus virulence.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae

Frank R. DeLeo; Liang Chen; Stephen F. Porcella; Craig A. Martens; Scott D. Kobayashi; Adeline R. Porter; Kalyan D. Chavda; Michael R. Jacobs; Barun Mathema; Randall J. Olsen; Robert A. Bonomo; James M. Musser; Barry N. Kreiswirth

Significance Carbapenem-resistant Klebsiella pneumoniae has emerged globally as a multidrug-resistant hospital pathogen for which there are few treatment options. Clinical isolates classified by multilocus sequence typing (ST) as ST258 are the most widespread. The basis for the success of ST258 organisms above and beyond antibiotic resistance is not known, nor is it clear whether infections are caused by a single clone. We used genome sequencing to reveal unexpected genetic diversity among ST258 organisms (thus disproving the single-clone hypothesis) and identified a recombination hotspot that accounts for the majority of divergence—and presumably for serologic variation—among ST258 clinical isolates. Our findings will facilitate the development of new clinical strategies designed to prevent or treat infections caused by multidrug-resistant K. pneumoniae. Infections caused by drug-resistant bacteria are a major problem worldwide. Carbapenem-resistant Klebsiella pneumoniae, most notably isolates classified as multilocus sequence type (ST) 258, have emerged as an important cause of hospital deaths. ST258 isolates are predominantly multidrug resistant, and therefore infections caused by them are difficult to treat. It is not known why the ST258 lineage is the most prevalent cause of multidrug-resistant K. pneumoniae infections in the United States and other countries. Here we tested the hypothesis that carbapenem-resistant ST258 K. pneumoniae is a single genetic clone that has disseminated worldwide. We sequenced to closure the genomes of two ST258 clinical isolates and used these genomes as references for comparative genome sequencing of 83 additional clinical isolates recovered from patients at diverse geographic locations worldwide. Phylogenetic analysis of the SNPs in the core genome of these isolates revealed that ST258 K. pneumoniae organisms are two distinct genetic clades. This unexpected finding disproves the single-clone hypothesis. Notably, genetic differentiation between the two clades results from an ∼215-kb region of divergence that includes genes involved in capsule polysaccharide biosynthesis. The region of divergence appears to be a hotspot for DNA recombination events, and we suggest that this region has contributed to the success of ST258 K. pneumoniae. Our findings will accelerate research on novel diagnostic, therapeutic, and vaccine strategies designed to prevent and/or treat infections caused by multidrug resistant K. pneumoniae.


PLOS ONE | 2011

Global Changes in Staphylococcus aureus Gene Expression in Human Blood

Natalia Malachowa; Adeline R. Whitney; Scott D. Kobayashi; Daniel E. Sturdevant; Adam D. Kennedy; Kevin R. Braughton; Duncan W. Shabb; Binh An Diep; Henry F. Chambers; Michael Otto; Frank R. DeLeo

Staphylococcus aureus is a leading cause of bloodstream infections worldwide. In the United States, many of these infections are caused by a strain known as USA300. Although progress has been made, our understanding of the S. aureus molecules that promote survival in human blood and ultimately facilitate metastases is incomplete. To that end, we analyzed the USA300 transcriptome during culture in human blood, human serum, and trypticase soy broth (TSB), a standard laboratory culture media. Notably, genes encoding several cytolytic toxins were up-regulated in human blood over time, and hlgA, hlgB, and hlgC (encoding gamma-hemolysin subunits HlgA, HlgB, and HlgC) were among the most highly up-regulated genes at all time points. Compared to culture supernatants from a wild-type USA300 strain (LAC), those derived from an isogenic hlgABC-deletion strain (LACΔhlgABC) had significantly reduced capacity to form pores in human neutrophils and ultimately cause neutrophil lysis. Moreover, LACΔhlgABC had modestly reduced ability to cause mortality in a mouse bacteremia model. On the other hand, wild-type and LACΔhlgABC strains caused virtually identical abscesses in a mouse skin infection model, and bacterial survival and neutrophil lysis after phagocytosis in vitro was similar between these strains. Comparison of the cytolytic capacity of culture supernatants from wild-type and isogenic deletion strains lacking hlgABC, lukS/F-PV (encoding PVL), and/or lukDE revealed functional redundancy among two-component leukotoxins in vitro. These findings, along with a requirement of specific growth conditions for leukotoxin expression, may explain the apparent limited contribution of any single two-component leukotoxin to USA300 immune evasion and virulence.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Genome-wide protective response used by group A Streptococcus to evade destruction by human polymorphonuclear leukocytes

Jovanka M. Voyich; Daniel E. Sturdevant; Kevin R. Braughton; Scott D. Kobayashi; Benfang Lei; Kimmo Virtaneva; David W. Dorward; James M. Musser; Frank R. DeLeo

Group A Streptococcus (GAS) evades polymorphonuclear leukocyte (PMN) phagocytosis and killing to cause human disease, including pharyngitis and necrotizing fasciitis (flesh-eating syndrome). We show that GAS genes differentially regulated during phagocytic interaction with human PMNs comprise a global pathogen-protective response to innate immunity. GAS prophage genes and genes involved in virulence, oxidative stress, cell wall biosynthesis, and gene regulation were up-regulated during PMN phagocytosis. Genes encoding novel secreted proteins were up-regulated, and the proteins were produced during human GAS infections. We discovered an essential role for the Ihk-Irr two-component regulatory system in evading PMN-mediated killing and promoting host–cell lysis, processes that would facilitate GAS pathogenesis. Importantly, the irr gene was highly expressed during human GAS pharyngitis. We conclude that a complex pathogen genetic program circumvents human innate immunity to promote disease. The gene regulatory program revealed by our studies identifies previously undescribed potential vaccine antigens and targets for therapeutic interventions designed to control GAS infections.


Journal of Immunology | 2004

Gene Expression Profiling Provides Insight into the Pathophysiology of Chronic Granulomatous Disease

Scott D. Kobayashi; Jovanka M. Voyich; Kevin R. Braughton; Adeline R. Whitney; William M. Nauseef; Harry L. Malech; Frank R. DeLeo

Human polymorphonuclear leukocytes (PMNs or neutrophils) kill invading microorganisms with reactive oxygen species (ROS) and cytotoxic granule components. PMNs from individuals with X-linked chronic granulomatous disease (XCGD) do not produce ROS, thereby rendering these individuals more susceptible to infection. In addition, XCGD patients develop tissue granulomas that obstruct vital organs, the mechanism(s) for which are unknown. To gain insight into the molecular processes that contribute to the pathophysiology of XCGD, including formation of granulomas, we compared global gene expression in PMNs from XCGD patients and healthy control individuals. Genes encoding mediators of inflammation and host defense, including CD11c, CD14, CD54, FcγR1, FcαR, CD120b, TLR5, IL-4R, CCR1, p47phox, p40phox, IL-8, CXCL1, Nramp1, and calgranulins A and B, were up-regulated constitutively in unstimulated XCGD patient PMNs. By comparing transcript levels in normal and XCGD PMNs after phagocytosis, we discovered 206 genes whose expression changed in the presence and the absence of ROS, respectively. Notably, altered Bcl2-associated X protein synthesis accompanied defective neutrophil apoptosis in XCGD patients. We hypothesize that granuloma formation in XCGD patients reflects both increased proinflammatory activity and defective PMN apoptosis, and we conclude that ROS contribute directly or indirectly to the resolution of the inflammatory response by influencing PMN gene transcription.


Wiley Interdisciplinary Reviews: Systems Biology and Medicine | 2009

Role of neutrophils in innate immunity: a systems biology‐level approach

Scott D. Kobayashi; Frank R. DeLeo

The innate immune system is the first line of host defense against invading microorganisms. Polymorphonuclear leukocytes (PMNs or neutrophils) are the most abundant leukocyte in humans and essential to the innate immune response against invading pathogens. Compared with the acquired immune response, which requires time to develop and is dependent on previous interaction with specific microbes, the ability of neutrophils to kill microorganisms is immediate, non‐specific, and not dependent on previous exposure to microorganisms. Historically, studies on PMN‐pathogen interaction focused on the events leading to killing of microorganisms, such as recruitment/chemotaxis, transmigration, phagocytosis, and activation, whereas post‐phagocytosis sequelae were infrequently considered. In addition, it was widely accepted that human neutrophils possessed limited capacity for new gene transcription and thus, relatively little biosynthetic capacity. This notion has changed dramatically within the past decade. Further, there is now more effort directed to understand the events occurring in PMNs after killing of microbes. Herein we review the systems biology‐level approaches that have been used to gain an enhanced view of the role of neutrophils during host‐pathogen interaction. We anticipate that these and future systems‐level studies will ultimately provide information critical to our understanding, treatment, and control of diseases caused by pathogenic microorganisms. Copyright


Journal of Immunology | 2005

Insights into Pathogen Immune Evasion Mechanisms: Anaplasma phagocytophilum Fails to Induce an Apoptosis Differentiation Program in Human Neutrophils

Dori L. Borjesson; Scott D. Kobayashi; Adeline R. Whitney; Jovanka M. Voyich; Cynthia M. Argue; Frank R. DeLeo

Polymorphonuclear leukocytes (PMNs or neutrophils) are essential to human innate host defense. However, some bacterial pathogens circumvent destruction by PMNs and thereby cause disease. Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis, survives within PMNs in part by altering normal host cell processes, such as production of reactive oxygen species (ROS) and apoptosis. To investigate the molecular basis of A. phagocytophilum survival within neutrophils, we used Affymetrix microarrays to measure global changes in human PMN gene expression following infection with A. phagocytophilum. Notably, A. phagocytophilum uptake induced fewer perturbations in host cell gene regulation compared with phagocytosis of Staphylococcus aureus. Although ingestion of A. phagocytophilum did not elicit significant PMN ROS, proinflammatory genes were gradually up-regulated, indicating delayed PMN activation rather than loss of proinflammatory capacity normally observed during phagocytosis-induced apoptosis. Importantly, ingestion of A. phagocytophilum failed to trigger the neutrophil apoptosis differentiation program that typically follows phagocytosis and ROS production. Heat-killed A. phagocytophilum caused some similar initial alterations in neutrophil gene expression and function, which included delaying normal PMN apoptosis and blocking Fas-induced programmed cell death. However, at 24 h, down-regulation of PMN gene transcription may be more reliant on active infection. Taken together, these findings suggest two separate antiapoptotic processes may work concomitantly to promote bacterial survival: 1) uptake of A. phagocytophilum fails to trigger the apoptosis differentiation program usually induced by bacteria, and 2) a protein or molecule on the pathogen surface can mediate an early delay in spontaneous neutrophil apoptosis.

Collaboration


Dive into the Scott D. Kobayashi's collaboration.

Top Co-Authors

Avatar

Frank R. DeLeo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Adeline R. Whitney

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kevin R. Braughton

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

James M. Musser

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Jovanka M. Voyich

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Natalia Malachowa

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Barry N. Kreiswirth

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar

Daniel E. Sturdevant

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Adeline R. Porter

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge