Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott E. Evans is active.

Publication


Featured researches published by Scott E. Evans.


Nature | 2014

Muc5b is required for airway defence

Michelle G. Roy; Alessandra Livraghi-Butrico; Ashley A. Fletcher; Melissa M. McElwee; Scott E. Evans; Ryan M. Boerner; Samantha N. Alexander; Lindsey K. Bellinghausen; Alfred S. Song; Youlia Petrova; Michael J. Tuvim; Roberto Adachi; Irlanda Romo; Andrea S. Bordt; M. Gabriela Bowden; Joseph H. Sisson; Prescott G. Woodruff; David J. Thornton; Karine Rousseau; Maria Miguelina De La Garza; Seyed Javad Moghaddam; Harry Karmouty-Quintana; Michael R. Blackburn; Scott M. Drouin; C. William Davis; Kristy A. Terrell; Barbara R. Grubb; Wanda K. O'Neal; Sonia C. Flores; Adela Cota-Gomez

Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b−/− mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.


Annual Review of Physiology | 2010

Inducible Innate Resistance of Lung Epithelium to Infection

Scott E. Evans; Yi Xu; Michael J. Tuvim; Burton F. Dickey

Most studies of innate immunity have focused on leukocytes such as neutrophils, macrophages, and natural killer cells. However, epithelial cells play key roles in innate defenses that include providing a mechanical barrier to microbial entry, signaling to leukocytes, and directly killing pathogens. Importantly, all these defenses are highly inducible in response to the sensing of microbial and host products. In healthy lungs, the level of innate immune epithelial function is low at baseline. This is indicated by low levels of spontaneous microbial killing and cytokine release, reflecting low constitutive stimulation in the nearly sterile lower respiratory tract when mucociliary clearance mechanisms are functioning effectively. This contrasts with the colon, where bacteria are continuously present and epithelial cells are constitutively activated. Although the surface area of the lungs presents a large target for microbial invasion, activated lung epithelial cells that are closely apposed to deposited pathogens are ideally positioned for microbial killing.


American Journal of Respiratory and Critical Care Medicine | 2008

Stimulation of Lung Innate Immunity Protects against Lethal Pneumococcal Pneumonia in Mice

Cecilia G. Clement; Scott E. Evans; Christopher M. Evans; David H. Hawke; Ryuji Kobayashi; Paul R. Reynolds; Seyed Javad Moghaddam; Brenton L. Scott; Ernestina Melicoff; Roberto Adachi; Burton F. Dickey; Michael J. Tuvim

RATIONALE The lungs are a common site of serious infection in both healthy and immunocompromised subjects, and the most likely route of delivery of a bioterror agent. Since the airway epithelium shows great structural plasticity in response to inflammatory stimuli, we hypothesized it might also show functional plasticity. OBJECTIVES To test the inducibility of lung defenses against bacterial challenge. METHODS Mice were treated with an aerosolized lysate of ultraviolet-killed nontypeable (unencapsulated) Haemophilus influenzae (NTHi), then challenged with a lethal dose of live Streptococcus pneumoniae (Spn) delivered by aerosol. MEASUREMENTS AND MAIN RESULTS Treatment with the NTHi lysate induced complete protection against challenge with a lethal dose of Spn if treatment preceded challenge by 4 to 24 hours. Lesser levels of protection occurred at shorter (83% at 2 h) and longer (83% at 48-72 h) intervals between treatment and challenge. There was also some protection when treatment was given 2 hours after challenge (survival increased from 14 to 57%), but not 24 hours after challenge. Protection did not depend on recruited neutrophils or resident mast cells and alveolar macrophages. Protection was specific to the airway route of infection, correlated in magnitude and time with rapid bacterial killing within the lungs, and was associated with increases of multiple antimicrobial polypeptides in lung lining fluid. CONCLUSIONS We infer that protection derives from stimulation of local innate immune mechanisms, and that activated lung epithelium is the most likely cellular effector of this response. Augmentation of innate antimicrobial defenses of the lungs might have therapeutic value.


PLOS ONE | 2009

Augmented Lung Inflammation Protects against Influenza A Pneumonia

Michael J. Tuvim; Scott E. Evans; Cecilia G. Clement; Burton F. Dickey; Brian E. Gilbert

Background Influenza pneumonia causes high mortality every year, and pandemic episodes kill millions of people. Influenza-related mortality has been variously ascribed to an ineffective host response that fails to limit viral replication, an excessive host inflammatory response that results in lung injury and impairment of gas exchange, or to bacterial superinfection. We sought to determine whether lung inflammation promoted or impaired host survival in influenza pneumonia. Methods and Findings To distinguish among these possible causes of influenza-related death, we induced robust lung inflammation by exposing mice to an aerosolized bacterial lysate prior to challenge with live virus. The treatment induced expression of the inflammatory cytokines IL-6 and TNF in bronchoalveolar lavage fluid 8- and 40-fold greater, respectively, than that caused by lethal influenza infection. Yet, this augmented inflammation was associated with striking resistance to host mortality (0% vs 90% survival, p = 0.0001) and reduced viral titers (p = 0.004). Bacterial superinfection of virus infected lungs was not observed. When mice were repeatedly exposed to the bacterial lysate, as would be clinically desirable during an influenza epidemic, there was no tachyphylaxis of the induced viral resistance. When the bacterial lysate was administered after the viral challenge, there was still some mortality benefit, and when ribavirin was added to the aerosolized bacterial lysate, host survival was synergistically improved (0% vs 93.3% survival, p<0.0001). Conclusions Together, these data indicate that innate immune resistance to influenza can be effectively stimulated, and suggest that ineffective rather than excessive inflammation is the major cause of mortality in influenza pneumonia.


American Journal of Respiratory Cell and Molecular Biology | 2010

Stimulated Innate Resistance of Lung Epithelium Protects Mice Broadly against Bacteria and Fungi

Scott E. Evans; Brenton L. Scott; Cecilia G. Clement; Derek T. Larson; Dimitrios P. Kontoyiannis; Russell E. Lewis; P. Rocco LaSala; Jennifer Pawlik; Johnny W. Peterson; Ashok K. Chopra; Gary R. Klimpel; Gabriela M. Bowden; Magnus Höök; Yi Xu; Michael J. Tuvim; Burton F. Dickey

Pneumonia is a serious problem worldwide. We recently demonstrated that innate defense mechanisms of the lung are highly inducible against pneumococcal pneumonia. To determine the breadth of protection conferred by stimulation of lung mucosal innate immunity, and to identify cells and signaling pathways activated by this treatment, mice were treated with an aerosolized bacterial lysate, then challenged with lethal doses of bacterial and fungal pathogens. Mice were highly protected against a broad array of Gram-positive, Gram-negative, and class A bioterror bacterial pathogens, and the fungal pathogen, Aspergillus fumigatus. Protection was associated with rapid pathogen killing within the lungs, and this effect was recapitulated in vitro using a respiratory epithelial cell line. Gene expression analysis of lung tissue showed marked activation of NF-kappaB, type I and II IFN, and antifungal Card9-Bcl10-Malt1 pathways. Cytokines were the most strongly induced genes, but the inflammatory cytokines TNF and IL-6 were not required for protection. Lung-expressed antimicrobial peptides were also highly up-regulated. Taken together, stimulated innate resistance appears to occur through the activation of multiple host defense signaling pathways in lung epithelial cells, inducing rapid pathogen killing, and conferring broad protection against virulent bacterial and fungal pathogens. Augmentation of innate antimicrobial defenses of the lungs might have therapeutic value for protection of patients with neutropenia or impaired adaptive immunity against opportunistic pneumonia, and for defense of immunocompetent subjects against a bioterror threat or epidemic respiratory infection.


Journal of Immunology | 2011

Synergistic interactions of TLR2/6 and TLR9 induce a high level of resistance to lung infection in mice

Jeffrey M. Duggan; Dahui You; Jeffrey O. Cleaver; Derek T. Larson; R. Joshua Garza; Francisco A. Guzmán Pruneda; Michael J. Tuvim; Jiexin Zhang; Burton F. Dickey; Scott E. Evans

Infectious pneumonias exact an unacceptable mortality burden worldwide. Efforts to protect populations from pneumonia have focused historically on antibiotic development and vaccine-enhanced adaptive immunity. However, we have reported recently that the lungs’ innate defenses can be induced therapeutically by inhalation of a bacterial lysate that protects mice against otherwise lethal pneumonia. In this study, we tested in mice the hypothesis that TLRs are required for this antimicrobial phenomenon and found that resistance could not be induced in the absence of the TLR signaling adaptor protein MyD88. We then attempted to recapitulate the protection afforded by the bacterial lysate by stimulating the lung epithelium with aerosolized synthetic TLR ligands. Although most single or combination treatments yielded no protection, simultaneous treatment with ligands for TLR2/6 and TLR9 conferred robust, synergistic protection against virulent Gram-positive and Gram-negative pathogens. Protection was associated with rapid pathogen killing in the lungs, and pathogen killing could be induced from lung epithelial cells in isolation. Taken together, these data demonstrate the requirement for TLRs in inducible resistance against pneumonia, reveal a remarkable, unanticipated synergistic interaction of TLR2/6 and TLR9, reinforce the emerging evidence supporting the antimicrobial capacity of the lung epithelium, and may provide the basis for a novel clinical therapeutic that can protect patients against pneumonia during periods of peak vulnerability.


Cancer Prevention Research | 2011

Interleukin 6, but Not T Helper 2 Cytokines, Promotes Lung Carcinogenesis

Cesar E. Ochoa; Seyedeh Golsar Mirabolfathinejad; Venado Ana Ruiz; Scott E. Evans; Mihai Gagea; Christopher M. Evans; Burton F. Dickey; Seyed Javad Moghaddam

Several epidemiologic studies have found that smokers with chronic obstructive pulmonary disease (COPD), an inflammatory disease of the lung, have an increased risk of lung cancer compared with smokers without COPD. We have shown a causal role for COPD-like airway inflammation in lung cancer promotion in the CCSPCre/LSL-K-rasG12D mouse model (CC-LR). In contrast, existing epidemiologic data do not suggest any definite association between allergic airway inflammation and lung cancer. To test this, CC-LR mice were sensitized to ovalbumin (OVA) and then challenged with an OVA aerosol weekly for 8 weeks. This resulted in eosinophilic lung inflammation associated with increased levels of T helper 2 cytokines and mucous metaplasia of airway epithelium, similar to what is seen in asthmatic patients. However, this type of inflammation did not result in a significant difference in lung surface tumor number (49 ± 9 in OVA vs. 52 ± 5 in control) in contrast to a 3.2-fold increase with COPD-like inflammation. Gene expression analysis of nontypeable Haemophilus influenzae (NTHi)-treated lungs showed upregulation of a different profile of inflammatory genes, including interleukin 6 (IL-6), compared with OVA-treated lungs. Therefore, to determine the causal role of cytokines that mediate COPD-like inflammation in lung carcinogenesis, we genetically ablated IL-6 in CC-LR mice. This not only inhibited intrinsic lung cancer development (1.7-fold) but also inhibited the promoting effect of extrinsic COPD-like airway inflammation (2.6-fold). We conclude that there is a clear specificity for the nature of inflammation in lung cancer promotion, and IL-6 has an essential role in lung cancer promotion. Cancer Prev Res; 4(1); 51–64. ©2010 AACR.


Cancer | 2011

Performance of a Standardized Bronchoalveolar Lavage Protocol in a Comprehensive Cancer Center: A Prospective 2-Year Study

Fotis Sampsonas; Dimitrios P. Kontoyiannis; Burton F. Dickey; Scott E. Evans

Flexible bronchoscopy with bronchoalveolar lavage (BAL) is performed widely for the diagnosis of pulmonary infections in patients with cancer, but there is no consensus regarding the technical parameters of the lavage procedure in this setting.


Mucosal Immunology | 2014

Lung epithelial cells are essential effectors of inducible resistance to pneumonia

Jeffrey O. Cleaver; Dahui You; D. R. Michaud; F. A. Guzmán Pruneda; M. M. Leiva Juarez; Jiaqi Zhang; P. M. Weill; Roberto Adachi; Lei Gong; Seyed Javad Moghaddam; M. E. Poynter; Michael J. Tuvim; Scott E. Evans

Infectious pneumonias are the leading cause of death worldwide, particularly among immunocompromised patients. Therapeutic stimulation of the lungs’ intrinsic defenses with a unique combination of inhaled Toll-like receptor (TLR) agonists broadly protects mice against otherwise lethal pneumonias. As the survival benefit persists despite cytotoxic chemotherapy-related neutropenia, the cells required for protection were investigated. The inducibility of resistance was tested in mice with deficiencies of leukocyte lineages due to genetic deletions and in wild-type mice with leukocyte populations significantly reduced by antibodies or toxins. Surprisingly, these serial reductions in leukocyte lineages did not appreciably impair inducible resistance, but targeted disruption of TLR signaling in the lung epithelium resulted in complete abrogation of the protective effect. Isolated lung epithelial cells were also induced to kill pathogens in the absence of leukocytes. Proteomic and gene expression analyses of isolated epithelial cells and whole lungs revealed highly congruent antimicrobial responses. Taken together, these data indicate that lung epithelial cells are necessary and sufficient effectors of inducible resistance. These findings challenge conventional paradigms about the role of epithelia in antimicrobial defense and offer a novel potential intervention to protect patients with impaired leukocyte-mediated immunity from fatal pneumonias.


Cell Reports | 2015

Porous Silicon Microparticle Potentiates Anti-Tumor Immunity by Enhancing Cross-Presentation and Inducing Type I Interferon Response

Xiaojun Xia; Junhua Mai; Rong Xu; Jorge Enrique Tovar Perez; Maria L. Guevara; Qi Shen; Chaofeng Mu; Hui Ying Tung; David B. Corry; Scott E. Evans; Xuewu Liu; Mauro Ferrari; Zhiqiang Zhang; Xian Chang Li; Rong Fu Wang; Haifa Shen

Micro- and nanometer-size particles have become popular candidates for cancer vaccine adjuvants. However, the mechanism by which such particles enhance immune responses remains unclear. Here, we report a porous silicon microparticle (PSM)-based cancer vaccine that greatly enhances cross-presentation and activates type I interferon (IFN-I) response in dendritic cells (DCs). PSM-loaded antigen exhibited prolonged early endosome localization and enhanced cross-presentation through both proteasome- and lysosome-dependent pathways. Phagocytosis of PSM by DCs induced IFN-I responses through a TRIF- and MAVS-dependent pathway. DCs primed with PSM-loaded HER2 antigen produced robust CD8 T cell-dependent anti-tumor immunity in mice bearing HER2+ mammary gland tumors. Importantly, this vaccination activated the tumor immune microenvironment with elevated levels of intra-tumor IFN-I and MHCII expression, abundant CD11c+ DC infiltration, and tumor-specific cytotoxic T cell responses. These findings highlight the potential of PSM as an immune adjuvant to potentiate DC-based cancer immunotherapy.

Collaboration


Dive into the Scott E. Evans's collaboration.

Top Co-Authors

Avatar

Burton F. Dickey

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael J. Tuvim

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Seyed Javad Moghaddam

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Dahui You

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey M. Duggan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Burton Dickey

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Derek T. Larson

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey O. Cleaver

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Amber M. Cumpian

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Brenton L. Scott

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge