Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott E. Giangrande is active.

Publication


Featured researches published by Scott E. Giangrande.


Bulletin of the American Meteorological Society | 2005

THE JOINT POLARIZATION EXPERIMENT Polarimetric Rainfall Measurements and Hydrometeor Classification

Alexander V. Ryzhkov; Terry J. Schuur; Donald W. Burgess; Pamela L. Heinselman; Scott E. Giangrande; Dusan S. Zrnic

As part of the evolution and future enhancement of the Next Generation Weather Radars (NEXRAD), the National Severe Storms Laboratory recently upgraded the KOUN Weather Surveillance Radar-1988 Doppler (WSR-88D) to include a polarimetric capability. The proof of concept was tested in central Oklahoma during a 1-yr demonstration project referred to as the Joint Polarization Experiment (JPOLE). This paper presents an overview of polarimetric algorithms for rainfall estimation and hydrometeor classification and their performance during JPOLE. The quality of rainfall measurements is validated on a large dataset from the Oklahoma Mesonet and Agricultural Research Service Micronet rain gauge networks. The comparison demonstrates that polarimetric rainfall estimates are often dramatically superior to those provided by conventional rainfall algorithms. Using a synthetic R(Z, KDP, ZDR) polarimetric rainfall relation, rms errors are reduced by a factor of 1.7 for point measurements and 3.7 for areal estimates [when ...


Journal of Applied Meteorology | 2005

Rainfall Estimation with a Polarimetric Prototype of WSR-88D

Alexander V. Ryzhkov; Scott E. Giangrande; Terry J. Schuur

As part of the Joint Polarization Experiment (JPOLE), the National Severe Storms Laboratory conducted an operational demonstration of the polarimetric utility of the Norman, Oklahoma (KOUN), Weather Surveillance Radar-1988 Doppler (WSR-88D). The capability of the KOUN radar to estimate rainfall is tested on a large dataset representing different seasons and different types of rain. A dense gauge network—the Agricultural Research Service (ARS) Micronet—is used to validate different polarimetric algorithms for rainfall estimation. One-hour rain totals are estimated from the KOUN radar using conventional and polarimetric algorithms and are compared with hourly accumulations measured by the gauges. Both point and areal rain estimates are examined. A new “synthetic” rainfall algorithm has been developed for rainfall estimation. The use of the synthetic polarimetric algorithm results in significant reduction in the rms errors of hourly rain estimates when compared with the conventional nonpolarimetric relation: 1.7 times for point measurements and 3.7 times for areal rainfall measurements.


Journal of Atmospheric and Oceanic Technology | 2005

Calibration Issues of Dual-Polarization Radar Measurements

Alexander V. Ryzhkov; Scott E. Giangrande; Valery M. Melnikov; Terry J. Schuur

Abstract Techniques for the absolute calibration of radar reflectivity Z and differential reflectivity ZDR measured with dual-polarization weather radars are examined herein. Calibration of Z is based on the idea of self-consistency among Z, ZDR, and the specific differential phase KDP in rain. Extensive spatial and temporal averaging is used to derive the average values of ZDR and KDP for each 1 dB step in Z. Such averaging substantially reduces the standard error of the KDP estimate so the technique can be used for a wide range of rain intensities, including light rain. In this paper, the performance of different consistency relations is analyzed and a new self-consistency methodology is suggested. The proposed scheme substantially reduces the impact of variability in the drop size distribution and raindrop shape on the quality of the Z calibration. The new calibration technique was tested on a large polarimetric dataset obtained during the Joint Polarization Experiment in Oklahoma and yielded an accura...


Bulletin of the American Meteorological Society | 2016

The Midlatitude Continental Convective Clouds Experiment (MC3E)

Mike Jensen; Walt Petersen; Ad Del Genio; Scott E. Giangrande; Andrew J. Heymsfield; G Heymsfield; Ay Hou; Pavlos Kollias; B Orr; Steven A. Rutledge; Schwaller; Edward J. Zipser

AbstractThe Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission, was conducted in south-central Oklahoma during April–May 2011. MC3E science objectives were motivated by the need to improve our understanding of midlatitude continental convective cloud system life cycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives, a multiscale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during MC3E, of which results from three deep convective events are highlighted. Vertical structure, air motions, precipitation drop size distributions, and ice properties were retrieved from multiwavelength radar, profiler, and aircraft observations for a mesoscale convec...


Journal of Applied Meteorology and Climatology | 2013

A Summary of Convective-Core Vertical Velocity Properties Using ARM UHF Wind Profilers in Oklahoma

Scott E. Giangrande; Scott Collis; Jerry M. Straka; Alain Protat; Christopher R. Williams; Steven K. Krueger

This study presents a summary of the properties of deep convective updraft and downdraft cores over the central plains of the United States, accomplished using a novel and now-standard Atmospheric Radiation Measurement Program (ARM) scanning mode for a commercial wind-profiler system. A unique profilerbased hydrometeor fall-speed correction method modeled for the convective environment was adopted. Accuracyofthevelocity retrievalsfromthis effortis expectedtobe within2ms 21 , with minimalbiasandbase core resolution expected near 1km. Updraft cores are found to behave with height in reasonable agreement with aircraft observations of previous continental convection, including those of the Thunderstorm Project. Intense updraft cores with magnitudes exceeding 15ms 21 are routinely observed. Downdraft cores are less frequently observed, with weaker magnitudes than updrafts. Weak, positive correlations are found between updraft intensity (maximum) and updraft diameter length (coefficient r to 0.5 aloft). Negligible correlations are observed for downdraft core lengths and intensity.


Weather and Forecasting | 2005

The Joint Polarization Experiment: Polarimetric Radar in Forecasting and Warning Decision Making

Kevin A. Scharfenberg; Daniel J. Miller; Terry J. Schuur; Paul T. Schlatter; Scott E. Giangrande; Valery M. Melnikov; Donald W. Burgess; David L. Andra; Michael P. Foster; John Krause

Abstract To test the utility and added value of polarimetric radar products in an operational environment, data from the Norman, Oklahoma (KOUN), polarimetric Weather Surveillance Radar-1988 Doppler (WSR-88D) were delivered to the National Weather Service Weather Forecast Office (WFO) in Norman as part of the Joint Polarization Experiment (JPOLE). KOUN polarimetric base data and algorithms were used at the WFO during the decision-making and forecasting processes for severe convection, flash floods, and winter storms. The delivery included conventional WSR-88D radar products, base polarimetric radar variables, a polarimetric hydrometeor classification algorithm, and experimental polarimetric quantitative precipitation estimation algorithms. The JPOLE data collection, delivery, and operational demonstration are described, with examples of several forecast and warning decision-making successes. Polarimetric data aided WFO forecasters during several periods of heavy rain, numerous large-hail-producing thunder...


Bulletin of the American Meteorological Society | 2017

The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

Scot T. Martin; Paulo Artaxo; Luiz A. T. Machado; Antonio O. Manzi; Rodrigo Augusto Ferreira de Souza; Courtney Schumacher; Jian Wang; Thiago Biscaro; Joel Brito; Alan J. P. Calheiros; K. Jardine; A. Medeiros; B. Portela; S. S. de Sá; Koichi Adachi; A. C. Aiken; Rachel I. Albrecht; L. M. Alexander; Meinrat O. Andreae; Henrique M. J. Barbosa; Peter R. Buseck; Duli Chand; Jennifer M. Comstock; Douglas A. Day; Manvendra K. Dubey; Jiwen Fan; Jerome D. Fast; Gilberto Fisch; Edward Charles Fortner; Scott E. Giangrande

AbstractThe Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraft to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed t...


Journal of Atmospheric and Oceanic Technology | 2005

Calibration of Dual-Polarization Radar in the Presence of Partial Beam Blockage

Scott E. Giangrande; Alexander V. Ryzhkov

Abstract In the presence of partial beam blockage (PBB), weather radar measurements can experience significant bias that directly compromises the accuracy of the hydrologic applications. Techniques for the calibration of the radar reflectivity factor Z and differential reflectivity ZDR, measured with dual-polarization weather radars in the presence of partial beam obstruction, are examined in this paper. The proposed ZDR calibration technique utilizes radar measurements of ZDR in light rain and dry aggregated snow at unblocked and blocked elevations. This calibration technique was tested for the National Severe Storms Laboratory’s (NSSL’s) Cimarron radar that suffers from PBB, and a polarimetric prototype of the Weather Surveillance Radar-1988 Doppler (WSR-88D) that does not experience PBB. Results indicate that the ZDR bias that is associated with PBB can be calibrated with an accuracy of 0.2–0.3 dB, provided that the dataset is sufficiently large. Calibration of Z in the presence of PBB is based on the ...


Nature | 2016

Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

Jian Wang; Radovan Krejci; Scott E. Giangrande; Chongai Kuang; Henrique M. J. Barbosa; Joel Brito; Samara Carbone; Xuguang Chi; Jennifer M. Comstock; Florian Ditas; Jošt V. Lavrič; H. E. Manninen; Fan Mei; Daniel Moran-Zuloaga; Christopher Pöhlker; Mira L. Pöhlker; Jorge Saturno; Beat Schmid; Rodrigo Augusto Ferreira de Souza; Stephen R. Springston; Jason M. Tomlinson; Tami Toto; David Walter; Daniela Wimmer; James N. Smith; Markku Kulmala; Luiz A. T. Machado; Paulo Artaxo; Meinrat O. Andreae; Tuukka Petäjä

The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.


Journal of Applied Meteorology and Climatology | 2014

Precipitation Estimation from the ARM Distributed Radar Network during the MC3E Campaign

Scott E. Giangrande; Scott Collis; Adam Theisen; Ali Tokay

This study presents radar-based precipitation estimates collected during the 2-month U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM)‐NASA Midlatitude Continental Convective Clouds Experiment (MC3E). Emphasis is on the usefulness of radar observations from the C-band and X-bandscanningARMprecipitationradars(CSAPRandXSAPR,respectively)forrainfallestimationproducts to distances within 100km of the Lamont, Oklahoma, ARM facility. The study utilizes a dense collection of collocated ARM, NASA Global Precipitation Measurement, and nearby surface Oklahoma Mesonet gauge records to evaluate radar-based hourly rainfall products and campaign-optimized methods over individual gauges and for areal rainfall characterizations. Rainfall products are also evaluated against the performance of a regional NWS Weather Surveillance Radar-1988 Doppler (WSR-88D) S-band dual-polarization radar product. Results indicate that the CSAPR system may achieve similar point‐ and areal‐gauge bias and rootmean-square (RMS) error performance to a WSR-88D reference for the variety of MC3E deep convective eventssampled. The best campaign rainfallperformancewas achieved when using radar relations capitalizing on estimates of the specific attenuation from the CSAPR system. The XSAPRs demonstrate limited capabilities, having modest success in comparison with the WSR-88D reference for hourly rainfall accumulations that are under 10mm. All rainfall estimation methods exhibit a reduction by a factor of 1.5‐2.5 in RMS errors for areal accumulations over a 15-km 2 NASA dense gauge network, with the smallest errors typically associated with dual-polarization radar methods.

Collaboration


Dive into the Scott E. Giangrande's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tami Toto

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael Jensen

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Luiz A. T. Machado

National Institute for Space Research

View shared research outputs
Top Co-Authors

Avatar

Jennifer M. Comstock

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mary Jane Bartholomew

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott Collis

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Zhe Feng

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge