Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott E. McPhillips is active.

Publication


Featured researches published by Scott E. McPhillips.


Journal of Synchrotron Radiation | 2002

Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines

Timothy M. McPhillips; Scott E. McPhillips; H.-J. Chiu; Aina E. Cohen; Ashley M. Deacon; P.J. Ellis; E. Garman; Ana Gonzalez; N.K. Sauter; R.P. Phizackerley; S.M. Soltis; Peter Kuhn

The Blu-Ice and Distributed Control System (DCS) software packages were developed to provide unified control over the disparate hardware resources available at a macromolecular crystallography beamline. Blu-Ice is a user interface that provides scientific experimenters and beamline support staff with intuitive graphical tools for collecting diffraction data and configuring beamlines for experiments. Blu-Ice communicates with the hardware at a beamline via DCS, an instrument-control and data-acquisition package designed to integrate hardware resources in a highly heterogeneous networked computing environment. Together, Blu-Ice and DCS provide a flexible platform for increasing the ease of use, the level of automation and the remote accessibility of beamlines. Blu-Ice and DCS are currently installed on four Stanford Synchrotron Radiation Laboratory crystallographic beamlines and are being implemented at sister light sources.


Acta Crystallographica Section D-biological Crystallography | 2008

New paradigm for macromolecular crystallography experiments at SSRL: automated crystal screening and remote data collection

S. Michael Soltis; Aina E. Cohen; Ashley M. Deacon; Thomas Eriksson; Ana Gonzalez; Scott E. McPhillips; Hsui Chui; Pete W. Dunten; Michael Hollenbeck; Irimpan I. Mathews; Mitch Miller; Penjit Moorhead; R. Paul Phizackerley; Clyde A. Smith; Jinhu Song; Henry van dem Bedem; Paul J. Ellis; Peter Kuhn; Timothy M. McPhillips; Nicholas K. Sauter; Kenneth Sharp; Irina Tsyba; Guenter Wolf

Through the combination of robust mechanized experimental hardware and a flexible control system with an intuitive user interface, SSRL researchers have screened over 200 000 biological crystals for diffraction quality in an automated fashion. Three quarters of SSRL researchers are using these data-collection tools from remote locations.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Goniometer-based femtosecond crystallography with X-ray free electron lasers

Aina E. Cohen; S. Michael Soltis; Ana Gonzalez; Laura Aguila; Roberto Alonso-Mori; Christopher O. Barnes; Elizabeth L. Baxter; Winnie Brehmer; Aaron S. Brewster; Axel T. Brunger; Guillermo Calero; Joseph F. Chang; Matthieu Chollet; Paul Ehrensberger; Thomas Eriksson; Yiping Feng; Johan Hattne; Britt Hedman; Michael Hollenbeck; James M. Holton; Stephen Keable; Brian K. Kobilka; Elena G. Kovaleva; Andrew C. Kruse; Henrik T. Lemke; Guowu Lin; Artem Y. Lyubimov; Aashish Manglik; Irimpan I. Mathews; Scott E. McPhillips

Significance The extremely short and bright X-ray pulses produced by X-ray free-electron lasers unlock new opportunities in crystallography-based structural biology research. Efficient methods to deliver crystalline material are necessary due to damage or destruction of the crystal by the X-ray pulse. Crystals for the first experiments were 5 µm or smaller in size, delivered by a liquid injector. We describe a highly automated goniometer-based approach, compatible with crystals of larger and varied sizes, and accessible at cryogenic or ambient temperatures. These methods, coupled with improvements in data-processing algorithms, have resulted in high-resolution structures, unadulterated by the effects of radiation exposure, from only 100 to 1,000 diffraction images. The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiation-sensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6-Å resolution electron density map. For smaller crystals, high-density grids were used to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of β2-adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources.


Journal of Applied Crystallography | 2008

Web-Ice: Integrated Data Collection and Analysis for Macromolecular Crystallography

Ana Gonzalez; Penjit Moorhead; Scott E. McPhillips; Jinhu Song; Ken Sharp; John R. Taylor; Paul D. Adams; Nicholas K. Sauter; S. Michael Soltis

New software tools are introduced to facilitate diffraction experiments involving large numbers of crystals. While existing programs have long provided a framework for lattice indexing, Bragg spot integration, and symmetry determination, these initial data processing steps often require significant manual effort. This limits the timely availability of data analysis needed for high-throughput procedures, including the selection of the best crystals from a large sample pool, and the calculation of optimal data collection parameters to assure complete spot coverage with minimal radiation damage. To make these protocols more efficient, we developed a network of software applications and application servers, collectively known as Web-Ice. When the package is installed at a crystallography beamline, a programming interface allows the beamline control software (e.g., Blu-Ice / DCSS) to trigger data analysis automatically. Results are organized based on a list of samples that the user provides, and are examined within a Web page, accessible both locally at the beamline or remotely. Optional programming interfaces permit the user to control data acquisition through the Web browser. The system as a whole is implemented to support multiple users and multiple processors, and can be expanded to provide additional scientific functionality. Web-Ice has a distributed architecture consisting of several stand-alone software components working together via a well defined interface. Other synchrotrons or institutions may integrate selected components or the whole of Web-Ice with their own data acquisition software. Updated information about current developments may be obtained at http://smb.slac.stanford.edu/research/developments/webice.


eLife | 2015

Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography

D.A. Keedy; Lillian R. Kenner; Matthew Warkentin; Rahel A. Woldeyes; Jesse B. Hopkins; Michael C. Thompson; Aaron S. Brewster; Andrew H. Van Benschoten; Elizabeth L. Baxter; Monarin Uervirojnangkoorn; Scott E. McPhillips; Jinhu Song; Roberto Alonso-Mori; James M. Holton; William I. Weis; Axel T. Brunger; S. Michael Soltis; Henrik T. Lemke; Ana Gonzalez; Nicholas K. Sauter; Aina E. Cohen; Henry van den Bedem; Robert E. Thorne; J.S. Fraser

Determining the interconverting conformations of dynamic proteins in atomic detail is a major challenge for structural biology. Conformational heterogeneity in the active site of the dynamic enzyme cyclophilin A (CypA) has been previously linked to its catalytic function, but the extent to which the different conformations of these residues are correlated is unclear. Here we compare the conformational ensembles of CypA by multitemperature synchrotron crystallography and fixed-target X-ray free-electron laser (XFEL) crystallography. The diffraction-before-destruction nature of XFEL experiments provides a radiation-damage-free view of the functionally important alternative conformations of CypA, confirming earlier synchrotron-based results. We monitored the temperature dependences of these alternative conformations with eight synchrotron datasets spanning 100-310 K. Multiconformer models show that many alternative conformations in CypA are populated only at 240 K and above, yet others remain populated or become populated at 180 K and below. These results point to a complex evolution of conformational heterogeneity between 180-–240 K that involves both thermal deactivation and solvent-driven arrest of protein motions in the crystal. The lack of a single shared conformational response to temperature within the dynamic active-site network provides evidence for a conformation shuffling model, in which exchange between rotamer states of a large aromatic ring in the middle of the network shifts the conformational ensemble for the other residues in the network. Together, our multitemperature analyses and XFEL data motivate a new generation of temperature- and time-resolved experiments to structurally characterize the dynamic underpinnings of protein function. DOI: http://dx.doi.org/10.7554/eLife.07574.001


Acta Crystallographica Section D-biological Crystallography | 2016

High-density grids for efficient data collection from multiple crystals

Elizabeth L. Baxter; Laura Aguila; Roberto Alonso-Mori; Christopher O. Barnes; Christopher A. Bonagura; Winnie Brehmer; Axel T. Brunger; Guillermo Calero; Tom T. Caradoc-Davies; Ruchira Chatterjee; William F. DeGrado; J.S. Fraser; Mohamed Ibrahim; Jan Kern; Brian K. Kobilka; Andrew C. Kruse; Karl M. Larsson; Heinrik T. Lemke; Artem Y. Lyubimov; Aashish Manglik; Scott E. McPhillips; Erik Norgren; Siew S. Pang; S.M. Soltis; Jinhu Song; Jessica L. Thomaston; Yingssu Tsai; William I. Weis; Rahel A. Woldeyes; Vittal K. Yachandra

A high-density sample mount has been developed for efficient goniometer-based sample delivery at synchrotron and XFEL sources.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Crystal structure of the pristine peroxidase ferryl center and its relevance to proton-coupled electron transfer

Georges Chreifi; Elizabeth L. Baxter; Tzanko I. Doukov; Aina E. Cohen; Scott E. McPhillips; Jinhu Song; Yergalem T. Meharenna; S. Michael Soltis; Thomas L. Poulos

Significance A major problem in determining the crystal structures of metalloenzymes is that the reducing power of X-rays often changes the oxidation state of the metal center, thereby complicating important mechanistic conclusions on enzyme function. This reduction is especially problematic in studying Fe(IV)=O intermediates, which are powerful oxidants used by many metalloenzymes. This problem can be circumvented using the Stanford Linear Coherent Light Source (LCLS), which generates intense X-ray pulses on the femtosecond time scale and enables structure determinations with no reduction of metal centers. Here, we report the crystal structure of the Fe(IV)=O peroxidase intermediate called compound I using data obtained from the LCLS. We also present kinetic and computational results that, together with crystal structures, provide important mechanistic insights. The reaction of peroxides with peroxidases oxidizes the heme iron from Fe(III) to Fe(IV)=O and a porphyrin or aromatic side chain to a cationic radical. X-ray–generated hydrated electrons rapidly reduce Fe(IV), thereby requiring very short exposures using many crystals, and, even then, some reduction cannot be avoided. The new generation of X-ray free electron lasers capable of generating intense X-rays on the tenths of femtosecond time scale enables structure determination with no reduction or X-ray damage. Here, we report the 1.5-Å crystal structure of cytochrome c peroxidase (CCP) compound I (CmpI) using data obtained with the Stanford Linear Coherent Light Source (LCLS). This structure is consistent with previous structures. Of particular importance is the active site water structure that can mediate the proton transfer reactions required for both CmpI formation and reduction of Fe(IV)=O to Fe(III)-OH. The structures indicate that a water molecule is ideally positioned to shuttle protons between an iron-linked oxygen and the active site catalytic His. We therefore have carried out both computational and kinetic studies to probe the reduction of Fe(IV)=O. Kinetic solvent isotope experiments show that the transfer of a single proton is critical in the peroxidase rate-limiting step, which is very likely the proton-coupled reduction of Fe(IV)=O to Fe(III)-OH. We also find that the pKa of the catalytic His substantially increases in CmpI, indicating that this active site His is the source of the proton required in the reduction of Fe(IV)=O to Fe(IV)-OH.


Acta Crystallographica Section D-biological Crystallography | 2013

AutoDrug: fully automated macromolecular crystallography workflows for fragment-based drug discovery.

Yingssu Tsai; Scott E. McPhillips; Ana Gonzalez; Timothy M. McPhillips; Daniel Zinn; Aina E. Cohen; Michael D. Feese; David Bushnell; Theresa Tiefenbrunn; C. David Stout; Bertram Ludaescher; Britt Hedman; Keith O. Hodgson; S. Michael Soltis

AutoDrug is software based upon the scientific workflow paradigm that integrates the Stanford Synchrotron Radiation Lightsource macromolecular crystallography beamlines and third-party processing software to automate the crystallography steps of the fragment-based drug-discovery process. AutoDrug screens a cassette of fragment-soaked crystals, selects crystals for data collection based on screening results and user-specified criteria and determines optimal data-collection strategies. It then collects and processes diffraction data, performs molecular replacement using provided models and detects electron density that is likely to arise from bound fragments. All processes are fully automated, i.e. are performed without user interaction or supervision. Samples can be screened in groups corresponding to particular proteins, crystal forms and/or soaking conditions. A single AutoDrug run is only limited by the capacity of the sample-storage dewar at the beamline: currently 288 samples. AutoDrug was developed in conjunction with RestFlow, a new scientific workflow-automation framework. RestFlow simplifies the design of AutoDrug by managing the flow of data and the organization of results and by orchestrating the execution of computational pipeline steps. It also simplifies the execution and interaction of third-party programs and the beamline-control system. Modeling AutoDrug as a scientific workflow enables multiple variants that meet the requirements of different user groups to be developed and supported. A workflow tailored to mimic the crystallography stages comprising the drug-discovery pipeline of CoCrystal Discovery Inc. has been deployed and successfully demonstrated. This workflow was run once on the same 96 samples that the group had examined manually and the workflow cycled successfully through all of the samples, collected data from the same samples that were selected manually and located the same peaks of unmodeled density in the resulting difference Fourier maps.


Journal of Synchrotron Radiation | 2005

Integrated instrumentation for combined polarized single-crystal XAS and diffraction data acquisition for biological applications

Matthew J. Latimer; Kazuki Ito; Scott E. McPhillips; Britt Hedman

Single-crystal X-ray absorption spectroscopy (XAS) instrumentation, allowing sequential integrated XAS and crystallographic data acquisition during the same experiment and on the same beamline, has been developed for SSRL beamline 9-3, a wiggler side station dedicated to general user biological XAS. The implementation includes a Huber kappa goniometer, Canberra 30-element Ge detector for XAS data collection, open-flow LHe and LN2 crystal coolers, a microscope for crystal alignment in the beam, and a MarCCD crystallography detector. The kappa goniometer allows a large accessible angular range with an open geometry, affording access to detectors and open stream coolers, as well as future instrumentation. Applicable standard hardware on SSRL crystallography beamlines has been incorporated, with crystallographic data collection controlled via the Blu-Ice software developed by the SSRL SMB macromolecular crystallography group. XAS data collection is handled through the SSRL standard XAS-Collect software. Initial diffraction and XAS data from single crystals using an open-flow cryostat are presented. The instrument will be available to general users after the SPEAR3 upgrade in 2004, and future expansion for use in high-throughput structural genomics XAS is proposed.


Journal of Applied Crystallography | 2010

Remote access to crystallography beamlines at SSRL: novel tools for training, education and collaboration

Graeme L. Card; Aina E. Cohen; Tzanko I. Doukov; Thomas Eriksson; Ana M. Gonzalez; Scott E. McPhillips; Pete W. Dunten; Irimpan I. Mathews; Jinhu Song; S. Michael Soltis

The ultimate goal of synchrotron data collection is to obtain the best possible data from the best available crystals, and the combination of automation and remote access at Stanford Synchrotron Radiation Lightsource (SSRL) has revolutionized the way in which scientists achieve this goal. This has also seen a change in the way novice crystallographers are trained in the use of the beamlines, and a wide range of remote tools and hands-on workshops are now offered by SSRL to facilitate the education of the next generation of protein crystallographers.

Collaboration


Dive into the Scott E. McPhillips's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinhu Song

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas K. Sauter

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Gonzalez

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth L. Baxter

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge