Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott Eliasof is active.

Publication


Featured researches published by Scott Eliasof.


Journal of Controlled Release | 2011

Preclinical to clinical development of the novel camptothecin nanopharmaceutical CRLX101

Sonke Svenson; Marc Wolfgang; Jungyeon Hwang; John Ryan; Scott Eliasof

Camptothecin (CPT) is a potent broad-spectrum anticancer agent that acts through inhibition of topoisomerase 1. Clinical development of CPT was unsuccessful due to poor drug solubility, insufficient in vivo stability of the active form, and toxicity. In order to address these issues, a polymeric nanoparticle comprised of cyclodextrin-poly(ethylene glycol) copolymer (CDP) conjugated to CPT (CRLX101) has been developed and Phase 2 clinical studies are ongoing. Camptothecin is conjugated to the polymer in its active form at 10-12 wt.% loading. CRLX101 self-assembles in solution into nanoparticles with an apparent solubility increase of >1000-fold as compared to the parent drug camptothecin. Preclinical studies exhibited CRLX101 pharmacokinetics superior to the parent drug. Drug concentration in tumor relative to plasma and other major organs is consistent with the enhanced permeation and retention (EPR) anticipated from a nanoparticle. Significant anti-tumor activity was observed that is superior when compared to irinotecan across a broad range of xenograft models. Pharmacokinetic data are consistent with the prolonged half-life and increased AUC. The CRLX101 preclinical and clinical data confirm that CDP can address not only solubility, formulation, toxicity, and pharmacokinetic challenges associated with administration of CPT, but more importantly, can impart unique biological properties, that enhance pharmacodynamics and efficacy of camptothecin.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Correlating preclinical animal studies and human clinical trials of a multifunctional, polymeric nanoparticle.

Scott Eliasof; Douglas Lazarus; Christian G. Peters; Roy I. Case; Roderic O. Cole; Jungyeon Hwang; Thomas Schluep; Joseph Chao; Jimmy Lin; Yun Yen; Han Han; Devin T. Wiley; Jonathan E. Zuckerman; Mark E. Davis

Nanoparticles are currently being investigated in a number of human clinical trials. As information on how nanoparticles function in humans is difficult to obtain, animal studies that can be correlative to human behavior are needed to provide guidance for human clinical trials. Here, we report correlative studies on animals and humans for CRLX101, a 20- to 30-nm-diameter, multifunctional, polymeric nanoparticle containing camptothecin (CPT). CRLX101 is currently in phase 2 clinical trials, and human data from several of the clinical investigations are compared with results from multispecies animal studies. The pharmacokinetics of polymer-conjugated CPT (indicative of the CRLX101 nanoparticles) in mice, rats, dogs, and humans reveal that the area under the curve scales linearly with milligrams of CPT per square meter for all species. Plasma concentrations of unconjugated CPT released from CRLX101 in animals and humans are consistent with each other after accounting for differences in serum albumin binding of CPT. Urinary excretion of polymer-conjugated CPT occurs primarily within the initial 24 h after dosing in animals and humans. The urinary excretion dynamics of polymer-conjugated and unconjugated CPT appear similar between animals and humans. CRLX101 accumulates into solid tumors and releases CPT over a period of several days to give inhibition of its target in animal xenograft models of cancer and in the tumors of humans. Taken in total, the evidence provided from animal models on the CRLX101 mechanism of action suggests that the behavior of CRLX101 in animals is translatable to humans.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Sulfhydryl modification of V449C in the glutamate transporter EAAT1 abolishes substrate transport but not the substrate-gated anion conductance

Rebecca P. Seal; Yasushi Shigeri; Scott Eliasof; Barbara H. Leighton; Susan G. Amara

Excitatory amino acid transporters (EAATs) buffer and remove synaptically released l-glutamate and maintain its concentrations below neurotoxic levels. EAATs also mediate a thermodynamically uncoupled substrate-gated anion conductance that may modulate cell excitability. Here, we demonstrate that modification of a cysteine substituted within a C-terminal domain of EAAT1 abolishes transport in both the forward and reverse directions without affecting activation of the anion conductance. EC50s for l-glutamate and sodium are significantly lower after modification, consistent with kinetic models of the transport cycle that link anion channel gating to an early step in substrate translocation. Also, decreasing the pH from 7.5 to 6.5 decreases the EC50 for l-glutamate to activate the anion conductance, without affecting the EC50 for the entire transport cycle. These findings demonstrate for the first time a structural separation of transport and the uncoupled anion flux. Moreover, they shed light on some controversial aspects of the EAAT transport cycle, including the kinetics of proton binding and anion conductance activation.


Vision Research | 1998

Localization and function of five glutamate transporters cloned from the salamander retina

Scott Eliasof; Jeffrey L. Arriza; Barbara H. Leighton; Susan G. Amara; Michael P. Kavanaugh

Glutamate is the major excitatory neurotransmitter in the vertebrate retina. Native glutamate transporters have been well characterized in several retinal neurons, particularly from the salamander retina. We have cloned five distinct glutamate transporters from the salamander retina and examined their localization and functional properties: sEAAT1, sEEAAT2A, sEAAT2B, sEAAT5A and sEAAT5B. sEAAT1 is a homologue of the glutamate transporter EAAT1 (GLAST), sEAAT2A and sEAAT2B are homologues of EAAT2 (GLT-1) and sEAAT5A and sEAAT5B are homologues of the recently cloned human retinal glutamate transporter EAAT5. Localization was determined by immunocytochemical techniques using antibodies directed at portions of the highly divergent carboxy terminal. Glutamate transporters were found in glial, photoreceptor, bipolar, amacrine and ganglion cells. The pharmacology and ionic dependence were determined by two-electrode voltage clamp recordings from Xenopus laevis oocytes which had previously been injected with one of the glutamate transporter mRNAs. Each of the transporters behaved in a manner consistent with a glutamate transporter and there were some distinguishing characteristics which make it possible to link the function in native cells with the behavior of the cloned transporters in this study.


Visual Neuroscience | 1997

Rapid AMPA receptor desensitization in catfish cone horizontal cells

Scott Eliasof; Craig E. Jahr

AMPA and NMDA type glutamate receptors were studied in isolated catfish cone horizontal cells using the whole-cell and outside-out patch-recording techniques. In whole-cell recordings, cyclothiazide (CTZ) enhanced the peak current in response to glutamate (in the presence of NMDA receptor antagonists). In patch recordings, currents evoked by rapid and maintained applications of glutamate desensitized with a time constant of one millisecond. CTZ blocked this rapid desensitization. Recovery from desensitization of the AMPA receptors was rapid, having a time constant of 8.65 ms. In contrast, the whole-cell and patch responses to applications of NMDA were much smaller than the AMPA receptor responses and did not desensitize. The relative contribution of these two receptor subtypes depends critically on the condition of the synapse; if glutamate levels are tonically present, the NMDA receptors contribute significantly to the postsynaptic response. If glutamate levels fall rapidly following the release of a single quantum of glutamate, then AMPA receptor currents will dominate the postsynaptic response.


Current Bioactive Compounds | 2011

CRLX101 (formerly IT-101)-A Novel Nanopharmaceutical of Camptothecin in Clinical Development.

Cissy Young; Thomas Schluep; Jungyeon Hwang; Scott Eliasof

CRLX101 (formerly IT-101) is a first-in-class nanopharmaceutical, currently in Phase 2a development, which has been developed by covalently conjugating camptothecin (CPT) to a linear, cyclodextrin-polyethylene glycol (CD-PEG) co-polymer that self-assembles into nanoparticles. As a nanometer-scale drug carrier system, the cyclodextrin polymeric nanoparticle technology, referred to as “CDP”, has unique design features and capabilities. Specifically, CRLX101 preclinical and clinical data confirm that CDP can address not only solubility, formulation, toxicity, and pharmacokinetic challenges associated with administration of CPT, but more importantly, can impart unique biological properties that enhance CPT pharmacodynamics and efficacy.


Clinical Cancer Research | 2015

Translational impact of nanoparticle-drug conjugate CRLX101 with or without bevacizumab in advanced ovarian cancer

Elizabeth Pham; Michael J. Birrer; Scott Eliasof; Edward Graeme Garmey; Douglas Lazarus; Christina R. Lee; Shan Man; Ursula A. Matulonis; Christian G. Peters; Ping Xu; Carolyn N. Krasner; Robert S. Kerbel

Purpose: Increased tumor hypoxia and hence elevated hypoxia-inducible factor-1α (HIF1α) is thought to limit the efficacy of vascular endothelial growth factor (VEGF) pathway–targeting drugs by upregulating adaptive resistance genes. One strategy to counteract this is to combine antiangiogenic drugs with agents able to suppress HIF1α. One such possibility is the investigational drug CRLX101, a nanoparticle–drug conjugate (NDC) containing the payload camptothecin, a known topoisomerase-I poison. Experimental Design: CRLX101 was evaluated both as a monotherapy and combination with bevacizumab in a preclinical mouse model of advanced metastatic ovarian cancer. These preclinical studies contributed to the rationale for undertaking a phase II clinical study to evaluate CRLX101 monotherapy in patients with advanced platinum-resistant ovarian cancer. Results: Preclinically, CRLX101 is highly efficacious as a monotherapy when administered at maximum-tolerated doses. Furthermore, chronic low-dose CRLX101 with bevacizumab reduced bevacizumab-induced HIF1α upregulation and resulted in synergistic efficacy, with minimal toxicity in mice. In parallel, initial data reported here from an ongoing phase II clinical study of CRLX101 monotherapy shows measurable tumor reductions in 74% of patients and a 16% RECIST response rate to date. Conclusions: Given these preclinical and initial clinical results, further clinical studies are currently evaluating CRLX101 in combination with bevacizumab in ovarian cancer and warrant the evaluation of this therapy combination in other cancer types where HIF1α is implicated in pathogenesis, as it may potentially be able to improve the efficacy of antiangiogenic drugs. Clin Cancer Res; 21(4); 808–18. ©2014 AACR.


Breast Cancer Research and Treatment | 2015

CRLX101, an investigational camptothecin-containing nanoparticle-drug conjugate, targets cancer stem cells and impedes resistance to antiangiogenic therapy in mouse models of breast cancer

Sarah J. Conley; Trenton L. Baker; Joseph Burnett; Rebecca Theisen; Douglas Lazarus; Christian G. Peters; Shawn G. Clouthier; Scott Eliasof; Max S. Wicha

Antiangiogenic therapies inhibit the development of new tumor blood vessels, thereby blocking tumor growth. Despite the advances in developing antiangiogenic agents, clinical data indicate that these drugs have limited efficacy in breast cancer patients. Tumors inevitably develop resistance to antiangiogenics, which is attributed in part to the induction of intra-tumoral hypoxia and stabilization of hypoxia-inducible factor 1α (HIF-1α), a transcription factor that promotes tumor angiogenesis, invasion, metastasis, and cancer stem cell (CSC) self-renewal. Here, we tested whether inhibiting HIF-1α can reverse the stimulatory effects of antiangiogenic-induced hypoxia on breast CSCs. Breast cancer cells grown under hypoxic conditions were treated with the dual topoisomerase-1 (TOPO-1) and HIF-1α inhibitor camptothecin and assessed for their CSC content. In a preclinical model of breast cancer, treatment with bevacizumab was compared to the combination treatment of bevacizumab with CRLX101, an investigational nanoparticle-drug conjugate with a camptothecin payload or CRLX101 monotherapy. While exposure to hypoxia increased the number of breast CSCs, treatment with CPT blocked this effect. In preclinical mouse models, concurrent administration of CRLX101 impeded the induction of both HIF-1α and CSCs in breast tumors induced by bevacizumab treatment. Greater tumor regression and delayed tumor recurrence were observed with the combination of these agents compared to bevacizumab alone. Tumor reimplantation experiments demonstrated that the combination therapy effectively targets the CSC populations. The results from these studies support the combined administration of dual TOPO-1- and HIF-1α-targeted agents like CRLX101 with antiangiogenic agents to increase the efficacy of these treatments.


Cancer Research | 2016

Preclinical Efficacy of Bevacizumab with CRLX101, an Investigational Nanoparticle-Drug Conjugate, in Treatment of Metastatic Triple-Negative Breast Cancer.

Elizabeth Pham; Melissa Yin; Christian G. Peters; Christina R. Lee; Brown D; Ping Xu; Shan Man; Jayaraman L; Rohde E; Annabelle Chow; Douglas Lazarus; Scott Eliasof; Foster Fs; Robert S. Kerbel

VEGF pathway-targeting antiangiogenic drugs, such as bevacizumab, when combined with chemotherapy have changed clinical practice for the treatment of a broad spectrum of human cancers. However, adaptive resistance often develops, and one major mechanism is elevated tumor hypoxia and upregulated hypoxia-inducible factor-1α (HIF1α) caused by antiangiogenic treatment. Reduced tumor vessel numbers and function following antiangiogenic therapy may also affect intratumoral delivery of concurrently administered chemotherapy. Nonetheless, combining chemotherapy and bevacizumab can lead to improved response rates, progression-free survival, and sometimes, overall survival, the extent of which can partly depend on the chemotherapy backbone. A rational, complementing chemotherapy partner for combination with bevacizumab would not only reduce HIF1α to overcome hypoxia-induced resistance, but also improve tumor perfusion to maintain intratumoral drug delivery. Here, we evaluated bevacizumab and CRLX101, an investigational nanoparticle-drug conjugate containing camptothecin, in preclinical mouse models of orthotopic primary triple-negative breast tumor xenografts, including a patient-derived xenograft. We also evaluated long-term efficacy of CRLX101 and bevacizumab to treat postsurgical, advanced metastatic breast cancer in mice. CRLX101 alone and combined with bevacizumab was highly efficacious, leading to complete tumor regressions, reduced metastasis, and greatly extended survival of mice with metastatic disease. Moreover, CRLX101 led to improved tumor perfusion and reduced hypoxia, as measured by contrast-enhanced ultrasound and photoacoustic imaging. CRLX101 durably suppressed HIF1α, thus potentially counteracting undesirable effects of elevated tumor hypoxia caused by bevacizumab. Our preclinical results show pairing a potent cytotoxic nanoparticle chemotherapeutic that complements and improves concurrent antiangiogenic therapy may be a promising treatment strategy for metastatic breast cancer. Cancer Res; 76(15); 4493-503. ©2016 AACR.


Cancer Research | 2017

CRLX101, a Nanoparticle–Drug Conjugate Containing Camptothecin, Improves Rectal Cancer Chemoradiotherapy by Inhibiting DNA Repair and HIF1α

Xi Tian; Minh Nguyen; Henry P. Foote; Joseph M. Caster; Kyle C. Roche; Christian G. Peters; Pauline Wu; Lata Jayaraman; Edward Graeme Garmey; Joel E. Tepper; Scott Eliasof; Andrew Z. Wang

Novel agents are needed to improve chemoradiotherapy for locally advanced rectal cancer. In this study, we assessed the ability of CRLX101, an investigational nanoparticle-drug conjugate containing the payload camptothecin (CPT), to improve therapeutic responses as compared with standard chemotherapy. CRLX101 was evaluated as a radiosensitizer in colorectal cancer cell lines and murine xenograft models. CRLX101 was as potent as CPT in vitro in its ability to radiosensitize cancer cells. Evaluations in vivo demonstrated that the addition of CRLX101 to standard chemoradiotherapy significantly increased therapeutic efficacy by inhibiting DNA repair and HIF1α pathway activation in tumor cells. Notably, CRLX101 was more effective than oxaliplatin at enhancing the efficacy of chemoradiotherapy, with CRLX101 and 5-fluorouracil producing the highest therapeutic efficacy. Gastrointestinal toxicity was also significantly lower for CRLX101 compared with CPT when combined with radiotherapy. Our results offer a preclinical proof of concept for CRLX101 as a modality to improve the outcome of neoadjuvant chemoradiotherapy for rectal cancer treatment, in support of ongoing clinical evaluation of this agent (LCC1315 NCT02010567). Cancer Res; 77(1); 112-22. ©2016 AACR.

Collaboration


Dive into the Scott Eliasof's collaboration.

Top Co-Authors

Avatar

Christian G. Peters

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jungyeon Hwang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen M. Keefe

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Susan G. Amara

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark E. Davis

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge