Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott F. Cummins is active.

Publication


Featured researches published by Scott F. Cummins.


Nature | 2010

The Amphimedon queenslandica genome and the evolution of animal complexity

Mansi Srivastava; Oleg Simakov; Jarrod Chapman; Bryony Fahey; Marie Gauthier; Therese Mitros; Gemma S. Richards; Cecilia Conaco; Michael Dacre; Uffe Hellsten; Claire Larroux; Nicholas H. Putnam; Mario Stanke; Maja Adamska; Aaron E. Darling; Sandie M. Degnan; Todd H. Oakley; David C. Plachetzki; Yufeng F. Zhai; Marcin Adamski; Andrew Calcino; Scott F. Cummins; David Goodstein; Christina Harris; Daniel J. Jackson; Sally P. Leys; Shengqiang Q. Shu; Ben J. Woodcroft; Michel Vervoort; Kenneth S. Kosik

Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sequencing of the sponge genome reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion and diversification of pan-metazoan transcription factor, signalling pathway and structural genes. This diverse ‘toolkit’ of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic- and germ-cell specification, cell adhesion, innate immunity and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.


PLOS Genetics | 2010

Ancient Protostome Origin of Chemosensory Ionotropic Glutamate Receptors and the Evolution of Insect Taste and Olfaction

Vincent Croset; Raphael Rytz; Scott F. Cummins; Aidan Budd; David Brawand; Henrik Kaessmann; Toby J. Gibson; Richard Benton

Ionotropic glutamate receptors (iGluRs) are a highly conserved family of ligand-gated ion channels present in animals, plants, and bacteria, which are best characterized for their roles in synaptic communication in vertebrate nervous systems. A variant subfamily of iGluRs, the Ionotropic Receptors (IRs), was recently identified as a new class of olfactory receptors in the fruit fly, Drosophila melanogaster, hinting at a broader function of this ion channel family in detection of environmental, as well as intercellular, chemical signals. Here, we investigate the origin and evolution of IRs by comprehensive evolutionary genomics and in situ expression analysis. In marked contrast to the insect-specific Odorant Receptor family, we show that IRs are expressed in olfactory organs across Protostomia—a major branch of the animal kingdom that encompasses arthropods, nematodes, and molluscs—indicating that they represent an ancestral protostome chemosensory receptor family. Two subfamilies of IRs are distinguished: conserved “antennal IRs,” which likely define the first olfactory receptor family of insects, and species-specific “divergent IRs,” which are expressed in peripheral and internal gustatory neurons, implicating this family in taste and food assessment. Comparative analysis of drosophilid IRs reveals the selective forces that have shaped the repertoires in flies with distinct chemosensory preferences. Examination of IR gene structure and genomic distribution suggests both non-allelic homologous recombination and retroposition contributed to the expansion of this multigene family. Together, these findings lay a foundation for functional analysis of these receptors in both neurobiological and evolutionary studies. Furthermore, this work identifies novel targets for manipulating chemosensory-driven behaviours of agricultural pests and disease vectors.


PLOS ONE | 2010

Male accessory gland protein reduces egg laying in a simultaneous hermaphrodite.

Joris M. Koene; Wiebe Sloot; Kora Montagne-Wajer; Scott F. Cummins; Bernard M. Degnan; John S. Smith; Gregg T. Nagle; Andries Ter Maat

Seminal fluid is an important part of the ejaculate of internally fertilizing animals. This fluid contains substances that nourish and activate sperm for successful fertilization. Additionally, it contains components that influence female physiology to further enhance fertilization success of the sperm donor, possibly beyond the recipients optimum. Although evidence for such substances abounds, few studies have unraveled their identities, and focus has been exclusively on separate-sex species. We present the first detailed study into the seminal fluid composition of a hermaphrodite (Lymnaea stagnalis). Eight novel peptides and proteins were identified from the seminal-fluid-producing prostate gland and tested for effects on oviposition, hatching and consumption. The gene for the protein found to suppress egg mass production, Ovipostatin, was sequenced, thereby providing the first fully-characterized seminal fluid substance in a simultaneous hermaphrodite. Thus, seminal fluid peptides and proteins have evolved and can play a crucial role in sexual selection even when the sexes are combined.


PLOS ONE | 2015

In silico Neuropeptidome of Female Macrobrachium rosenbergii Based on Transcriptome and Peptide Mining of Eyestalk, Central Nervous System and Ovary

Saowaros Suwansa-ard; Tipsuda Thongbuakaew; Tianfang Wang; Min Zhao; Abigail Elizur; Peter J. Hanna; Prapee Sretarugsa; Scott F. Cummins; Prasert Sobhon

Macrobrachium rosenbergii is the most economically important of the cultured freshwater crustacean species, yet there is currently a deficiency in genomic and transcriptomic information for research requirements. In this study, we present an in silico analysis of neuropeptide genes within the female M. rosenbergii eyestalk, central nervous system, and ovary. We could confidently predict 37 preproneuropeptide transcripts, including those that encode bursicons, crustacean cardioactive peptide, crustacean hyperglycemic hormones, eclosion hormone, pigment-dispersing hormones, diuretic hormones, neuropeptide F, neuroparsins, SIFamide, and sulfakinin. These transcripts are most prominent within the eyestalk and central nervous system. Transcript tissue distribution as determined by reverse transcription-polymerase chain reaction revealed the presence of selected neuropeptide genes of interest mainly in the nervous tissues while others were additionally present in the non-nervous tissues. Liquid chromatography-mass spectrometry analysis of eyestalk peptides confirmed the presence of the crustacean hyperglycemic hormone precursor. This data set provides a strong foundation for further studies into the functional roles of neuropeptides in M. rosenbergii, and will be especially helpful for developing methods to improve crustacean aquaculture.


PLOS ONE | 2014

Analysis of the central nervous system transcriptome of the eastern rock lobster Sagmariasus verreauxi reveals its putative neuropeptidome.

Tomer Ventura; Scott F. Cummins; Quinn P. Fitzgibbon; Sc Battaglene; Abigail Elizur

Neuropeptides have been discovered in many arthropod species including crustaceans. The nature of their biological function is well studied and varies from behavior modulation to physiological regulation of complex biochemical processes such as metabolism, molt and reproduction. Due to their key role in these fundamental processes, neuropeptides are often targeted for modulating these processes to align with market demands in commercially important species. We generated a comprehensive transcriptome of the eyestalk and brain of one of the few commercially important spiny lobster species in the southern Hemisphere, the Eastern rock lobster Sagmariasus verreauxi and mined it for novel neuropeptide and protein hormone-encoding transcripts. We then characterized the predicted mature hormones to verify their validity based on conserved motifs and features known from previously reported hormones. Overall, 37 transcripts which are predicted to encode mature full-length/partial peptides/proteins were identified, representing 21 peptide/protein families/subfamilies. All transcripts had high similarity to hormones that were previously characterized in other decapod crustacean species or, where absent in crustaceans, in other arthropod species. These included, in addition to other proteins previously described in crustaceans, prohormone-3 and prohormone-4 which were previously identified only in insects. A homolog of the crustacean female sex hormone (CFSH), recently found to be female-specific in brachyuran crabs was found to have the same levels of expression in both male and female eyestalks, suggesting that the CFSH female specificity is not conserved throughout decapod crustaceans. Digital gene expression showed that 24 out of the 37 transcripts presented in this study have significant changes in expression between eyestalk and brain. In some cases a trend of difference between males and females could be seen. Taken together, this study provides a comprehensive neuropeptidome of a commercially important crustacean species with novel peptides and protein hormones identified for the first time in decapods.


BMC Genomics | 2014

Neuropeptides encoded by the genomes of the Akoya pearl oyster Pinctata fucata and Pacific oyster Crassostrea gigas: a bioinformatic and peptidomic survey

Michael J. Stewart; Pascal Favrel; Bronwyn Rotgans; Tianfang Wang; Min Zhao; Manzar Sohail; Wayne A. O’Connor; Abigail Elizur; Joël Henry; Scott F. Cummins

BackgroundOysters impart significant socio-ecological benefits from primary production of food supply, to estuarine ecosystems via reduction of water column nutrients, plankton and seston biomass. Little though is known at the molecular level of what genes are responsible for how oysters reproduce, filter nutrients, survive stressful physiological events and form reef communities. Neuropeptides represent a diverse class of chemical messengers, instrumental in orchestrating these complex physiological events in other species.ResultsBy a combination of in silico data mining and peptide analysis of ganglia, 74 putative neuropeptide genes were identified from genome and transcriptome databases of the Akoya pearl oyster, Pinctata fucata and the Pacific oyster, Crassostrea gigas, encoding precursors for over 300 predicted bioactive peptide products, including three newly identified neuropeptide precursors PFGx8amide, RxIamide and Wx3Yamide. Our findings also include a gene for the gonadotropin-releasing hormone (GnRH) and two egg-laying hormones (ELH) which were identified from both oysters. Multiple sequence alignments and phylogenetic analysis supports similar global organization of these mature peptides. Computer-based peptide modeling of the molecular tertiary structures of ELH highlights the structural homologies within ELH family, which may facilitate ELH activity leading to the release of gametes.ConclusionOur analysis demonstrates that oysters possess conserved molluscan neuropeptide domains and overall precursor organization whilst highlighting many previously unrecognized bivalve idiosyncrasies. This genomic analysis provides a solid foundation from which further studies aimed at the functional characterization of these molluscan neuropeptides can be conducted to further stimulate advances in understanding the ecology and cultivation of oysters.


Current Biology | 2011

Extreme aggression in male squid induced by a β-MSP-like pheromone.

Scott F. Cummins; Jean G. Boal; Kendra C. Buresch; Chitraporn Kuanpradit; Prasert Sobhon; Johanna B. Holm; Bernard M. Degnan; Gregg T. Nagle; Roger T. Hanlon

Male-male aggression is widespread in the animal kingdom and subserves many functions related to the acquisition or retention of resources such as shelter, food, and mates. These functions have been studied widely in the context of sexual selection, yet the proximate mechanisms that trigger or strengthen aggression are not well known for many taxa. Various external sensory cues (visual, audio, chemical) acting alone or in combination stimulate the complex behavioral interactions of fighting behaviors. Here we report the discovery of a 10 kDa protein, termed Loligo β-microseminoprotein (Loligo β-MSP), that immediately and dramatically changes the behavior of male squid from calm swimming and schooling to extreme fighting, even in the absence of females. Females synthesize Loligo β-MSP in their reproductive exocrine glands and embed the protein in the outer tunic of egg capsules, which are deposited on the open sea floor. Males are attracted to the eggs visually, but upon touching them and contacting Loligo β-MSP, they immediately escalate into intense physical fighting with any nearby males. Loligo β-MSP is a distant member of the chordate β-microseminoprotein family found in mammalian reproductive secretions, suggesting that this gene family may have taxonomically widespread roles in sexual competition.


Evolution & Development | 2010

FMRFamide gene and peptide expression during central nervous system development of the cephalopod mollusk, Idiosepius notoides

Tim Wollesen; Scott F. Cummins; Bernard M. Degnan; Andreas Wanninger

SUMMARY Mollusks are a showcase of brain evolution represented by several classes with a varying degree of nervous system centralization. Cellular and molecular processes involved in the evolution of the highly complex cephalopod brain from a simple, monoplacophoran‐like ancestor are still obscure and homologies on the cellular level are poorly established. FMRFamide (Phe‐Ile‐Arg‐Phe‐NH2)‐related peptides (FaRPs) constitute an evolutionarily conserved and diverse group of neuropeptides in the central nervous system (CNS) of many metazoans. Herein, we provide a detailed description of the developing FMRFamide‐like immunoreactive (Fa‐lir) CNS of the pygmy squid Idiosepius notoides using gene expression analyses and immunocytochemistry. The open reading frame of the I. notoides FMRFamide gene InFMRF predicts one copy each of FIRFamide, FLRFamide (Phe‐Leu‐Arg‐Phe‐NH2), ALSGDAFLRFamide (Ala‐Leu‐Ser‐Gly‐Asp‐Ala‐Phe‐Leu‐Arg‐Phe‐NH2), and 11 copies of FMRFamide. Applying matrix‐assisted laser desorption/ionization time‐of‐flight (ToF) mass spectrometry‐based peptide profiling, we characterized all predicted FaRPs except ALSGDAFLRFamide. Two cell clusters express InFMRF and show FMRFamide‐like‐immunoreactivity within the palliovisceral ganglia, that is, the future posterior subesophageal mass, during the lobe differentiation phase. They project neurites via ventral axonal tracts, which form the scaffold of the future subesophageal mass. In the supraesophageal mass, InFMRF is first expressed during mid‐embryogenesis in the superior and inferior buccal lobes. A neurite of the peduncle commissure represents the first Fa‐lir element. Later, the sub‐ and supraesophageal mass interconnect via Fa‐lir neurites and more brain lobes express InFMRF and FMRFamide‐like peptides. InFMRF expression was observed in fewer brain lobes than Fa‐lir elements. The early expression of InFMRF and FMRFamide‐lir peptides in the visceral system and not the remaining CNS of the cephalopod I. notoides resembles the condition found in the majority of investigated gastropods.


BMC Genomics | 2015

Molecular insights into land snail neuropeptides through transcriptome and comparative gene analysis

Kevin J Adamson; Tianfang Wang; Min Zhao; Francesca Bell; Anna V Kuballa; Kenneth B. Storey; Scott F. Cummins

BackgroundSnails belong to the molluscan class Gastropoda, which inhabit land, freshwater and marine environments. Several land snail species, including Theba pisana, are crop pests of major concern, causing extensive damage to agriculture and horticulture. A deeper understanding of their molecular biology is necessary in order to develop methods to manipulate land snail populations.ResultsThe present study used in silico gene data mining of T. pisana tissue transcriptomes to predict 24,920 central nervous system (CNS) proteins, 37,661 foot muscle proteins and 40,766 hepatopancreas proteins, which together have 5,236 unique protein functional domains. Neuropeptides, metabolic enzymes and epiphragmin genes dominated expression within the CNS, hepatopancreas and muscle, respectively. Further investigation of the CNS transcriptome demonstrated that it might contain as many as 5,504 genes that encode for proteins destined for extracellular secretion. Neuropeptides form an important class of cell-cell messengers that control or influence various complex metabolic events. A total of 35 full-length neuropeptide genes were abundantly expressed within T. pisana CNS, encoding precursors that release molluscan-type bioactive neuropeptide products. These included achatin, allototropin, conopressin, elevenin, FMRFamide, LFRFamide, LRFNVamide, myomodulins, neurokinin Y, PKYMDT, PXFVamide, sCAPamides and several insulin-like peptides. Liquid chromatography-mass spectrometry of neural ganglia confirmed the presence of many of these neuropeptides.ConclusionsOur results provide the most comprehensive picture of the molecular genes and proteins associated with land snail functioning, including the repertoire of neuropeptides that likely play significant roles in neuroendocrine signalling. This information has the potential to expedite the study of molluscan metabolism and potentially stimulate advances in the biological control of land snail pest species.


Peptides | 2006

Newly identified water-borne protein pheromones interact with attractin to stimulate mate attraction in Aplysia

Scott F. Cummins; Amy E. Nichols; Catherine H. Schein; Gregg T. Nagle

The water-borne protein attractin is a potent sex pheromone involved in forming and maintaining mating and egg-laying aggregations in the marine mollusk Aplysia. Binary blends of attractin and either enticin, temptin, or seductin, three other Aplysia protein pheromones, stimulate mate attraction. The four pheromones are thought to act in concert during egg-laying. The new data presented here show that: (1) the water-borne odor of non-laying Aplysia brasiliana further increases the attractiveness of attractin and of eggs in T-maze bioassays. This suggests that individual Aplysia release additional factors that enhance the effects of attractin, enticin, temptin, and seductin during egg-laying; (2) the N-terminal region of enticin aligns well with the conserved epidermal growth factor (EGF)-like domain of mammalian reproductive proteins known as fertilins, which may mediate intercellular adhesion interactions between eggs and sperm; (3) temptin, according to fold recognition servers, may also have an EGF-like fold. Enticin and temptin also have conserved metal binding sequences that may play a role in their signaling behavior. These results suggest that aspects of mammalian egg-sperm interactions (fertilins) may have evolved from pheromonal signaling mechanisms. We also review the structure, expression, localization, release, and behavioral actions of attractin, enticin, temptin, and seductin.

Collaboration


Dive into the Scott F. Cummins's collaboration.

Top Co-Authors

Avatar

Tianfang Wang

University of the Sunshine Coast

View shared research outputs
Top Co-Authors

Avatar

Abigail Elizur

University of the Sunshine Coast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Zhao

University of the Sunshine Coast

View shared research outputs
Top Co-Authors

Avatar

Gregg T. Nagle

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Utpal Bose

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saowaros Suwansa-ard

University of the Sunshine Coast

View shared research outputs
Top Co-Authors

Avatar

Bronwyn Rotgans

University of the Sunshine Coast

View shared research outputs
Researchain Logo
Decentralizing Knowledge