Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott F. Michael is active.

Publication


Featured researches published by Scott F. Michael.


Nature | 1999

Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes

Feng Gao; Elizabeth Bailes; David Robertson; Yalu Chen; Cynthia M. Rodenburg; Scott F. Michael; Larry B. Cummins; Larry O. Arthur; Martine Peeters; George M. Shaw; Paul M. Sharp; Beatrice H. Hahn

The human AIDS viruses human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) represent cross-species (zoonotic) infections. Although the primate reservoir of HIV-2 has been clearly identified as the sooty mangabey (Cercocebus atys),, the origin of HIV-1 remains uncertain. Viruses related to HIV-1 have been isolated from the common chimpanzee (Pan troglodytes), but only three such SIVcpz infections have been documented,,, one of which involved a virus so divergent that it might represent a different primate lentiviral lineage. In a search for the HIV-1 reservoir, we have now sequenced the genome of a new SIVcpz strain (SIVcpzUS) and have determined, by mitochondrial DNA analysis, the subspecies identity of all known SIVcpz-infected chimpanzees. We find that two chimpanzee subspecies in Africa, the central P. t. troglodytes and the eastern P. t. schweinfurthii, harbour SIVcpz and that their respective viruses form two highly divergent (but subspecies-specific) phylogenetic lineages. All HIV-1 strains known to infect man, including HIV-1 groups M, N and O, are closely related to just one of these SIVcpz lineages, that found in P. t. troglodytes. Moreover, we find that HIV-1 group N is a mosaic of SIVcpzUS- and HIV-1-related sequences, indicating an ancestral recombination event in a chimpanzee host. These results, together with the observation that the natural range of P. t. troglodytes coincides uniquely with areas of HIV-1 group M, N and O endemicity, indicate that P. t. troglodytes is the primary reservoir for HIV-1 and has been the source of at least three independent introductions of SIVcpz into the human population.


Nature Medicine | 1998

HIV-1 Vpr increases viral expression by manipulation of the cell cycle : a mechanism for selection of Vpr in vivo

Wei Chun Goh; M. E. Rogel; C. M. Kinsey; Scott F. Michael; Patricia N. Fultz; Martin A. Nowak; Beatrice H. Hahn; Michael Emerman

The human immunodeficiency virus type 1 (HIV-1) encodes a protein, called Vpr, that prevents proliferation of infected cells by arresting them in G2 of the cell cycle. This Vpr-mediated cell-cycle arrest is also conserved among highly divergent simian immunodeficiency viruses, suggesting an important role in the virus life cycle. However, it has been unclear how this could be a selective advantage for the virus. Here we provide evidence that expression of the viral genome is optimal in the G2 phase of the cell cycle, and that Vpr increases virus production by delaying cells at the point of the cell cycle where the long terminal repeat (LTR) is most active. Although Vpr is selected against when virus is adapted to tissue culture, we show that selection for Vpr function in vivo occurs in both humans and chimpanzees infected with HIV-1. These results suggest a novel mechanism for maximizing virus production in the face of rapid killing of infected target cells.


Virology Journal | 2005

Peptide inhibitors of dengue virus and West Nile virus infectivity

Yancey M. Hrobowski; Robert F. Garry; Scott F. Michael

Viral fusion proteins mediate cell entry by undergoing a series of conformational changes that result in virion-target cell membrane fusion. Class I viral fusion proteins, such as those encoded by influenza virus and human immunodeficiency virus (HIV), contain two prominent alpha helices. Peptides that mimic portions of these alpha helices inhibit structural rearrangements of the fusion proteins and prevent viral infection. The envelope glycoprotein (E) of flaviviruses, such as West Nile virus (WNV) and dengue virus (DENV), are class II viral fusion proteins comprised predominantly of beta sheets. We used a physio-chemical algorithm, the Wimley-White interfacial hydrophobicity scale (WWIHS) [1] in combination with known structural data to identify potential peptide inhibitors of WNV and DENV infectivity that target the viral E protein. Viral inhibition assays confirm that several of these peptides specifically interfere with target virus entry with 50% inhibitory concentration (IC50) in the 10 μM range. Inhibitory peptides similar in sequence to domains with a significant WWIHS scores, including domain II (IIb), and the stem domain, were detected. DN59, a peptide corresponding to the stem domain of DENV, inhibited infection by DENV (>99% inhibition of plaque formation at a concentrations of <25 μM) and cross-inhibition of WNV fusion/infectivity (>99% inhibition at <25 μM) was also demonstrated with DN59. However, a potent WNV inhibitory peptide, WN83, which corresponds to WNV E domain IIb, did not inhibit infectivity by DENV. Additional results suggest that these inhibitory peptides are noncytotoxic and act in a sequence specific manner. The inhibitory peptides identified here can serve as lead compounds for the development of peptide drugs for flavivirus infection.


Virology Journal | 2010

Neutralizing and non-neutralizing monoclonal antibodies against dengue virus E protein derived from a naturally infected patient.

John S. Schieffelin; Joshua M. Costin; Cindo O. Nicholson; Nicole M Orgeron; Krystal A. Fontaine; Sharon Isern; Scott F. Michael; James E. Robinson

BackgroundAntibodies produced in response to infection with any of the four serotypes of dengue virus generally provide homotypic immunity. However, prior infection or circulating maternal antibodies can also mediate a non-protective antibody response that can enhance the course of disease in a subsequent heterotypic infection. Naturally occurring human monoclonal antibodies can help us understand the protective and pathogenic roles of the humoral immune system in dengue virus infection.ResultsEpstein-Barr Virus (EBV) transformation of B cells isolated from the peripheral blood of a human subject with previous dengue infection was performed. B cell cultures were screened by ELISA for antibodies to dengue (DENV) envelope (E) protein. ELISA positive cultures were cloned by limiting dilution. Three IgG1 human monoclonal antibodies (HMAbs) were purified and their binding specificity to E protein was verified by ELISA and biolayer interferometry. Neutralization and enhancement assays were conducted in epithelial and macrophage-like cell lines, respectively. All three HMAbs bound to E from at least two of the four DENV serotypes, one of the HMAbs was neutralizing, and all were able to enhance DENV infection.ConclusionsHMAbs against DENV can be successfully generated by EBV transformation of B cells from patients at least two years after naturally acquired DENV infections. These antibodies show different patterns of cross-reactivity, neutralizing, and enhancement activity.


Journal of Clinical Investigation | 2014

Immune activation alters cellular and humoral responses to yellow fever 17D vaccine

Enoch Muyanja; Aloysius Ssemaganda; Pearline Ngauv; Rafael Cubas; Hélène Perrin; Divya Srinivasan; Glenda Canderan; Benton Lawson; Jakub Kopycinski; Amanda S. Graham; Dawne K. Rowe; Michaela J. Smith; Denis Gaucher; Sharon Isern; Scott F. Michael; Guido Silvestri; Thomas H. Vanderford; Erika Castro; Giuseppe Pantaleo; Joel Singer; Jill Gillmour; Noah Kiwanuka; Annet Nanvubya; Claudia Schmidt; Josephine Birungi; Josephine H. Cox; Elias K. Haddad; Pontiano Kaleebu; Patricia Fast; Rafick-Pierre Sekaly

BACKGROUND Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. METHODS We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. RESULTS We showed that YF-17D-induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D-neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. CONCLUSION Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. TRIAL REGISTRATION Registration is not required for observational studies. FUNDING This study was funded by Canadas Global Health Research Initiative, Defense Threat Reduction Agency, National Institute of Allergy and Infectious Diseases, Bill & Melinda Gates Foundation, and United States Agency for International Development.


Journal of Virology | 2013

Mechanistic study of broadly neutralizing human monoclonal antibodies against dengue virus that target the fusion loop

Joshua M. Costin; Elena Zaitseva; Kristen M. Kahle; Cindo O. Nicholson; Dawne K. Rowe; Amanda S. Graham; Lindsey E. Bazzone; Greg Hogancamp; Marielys Figueroa Sierra; Rachel H. Fong; Sung-Tae Yang; Li Lin; James E. Robinson; Benjamin J. Doranz; Leonid V. Chernomordik; Scott F. Michael; John S. Schieffelin; Sharon Isern

ABSTRACT There are no available vaccines for dengue, the most important mosquito-transmitted viral disease. Mechanistic studies with anti-dengue virus (DENV) human monoclonal antibodies (hMAbs) provide a rational approach to identify and characterize neutralizing epitopes on DENV structural proteins that can serve to inform vaccine strategies. Here, we report a class of hMAbs that is likely to be an important determinant in the human humoral response to DENV infection. In this study, we identified and characterized three broadly neutralizing anti-DENV hMAbs: 4.8A, D11C, and 1.6D. These antibodies were isolated from three different convalescent patients with distinct histories of DENV infection yet demonstrated remarkable similarities. All three hMAbs recognized the E glycoprotein with high affinity, neutralized all four serotypes of DENV, and mediated antibody-dependent enhancement of infection in Fc receptor-bearing cells at subneutralizing concentrations. The neutralization activities of these hMAbs correlated with a strong inhibition of virus-liposome and intracellular fusion, not virus-cell binding. We mapped epitopes of these antibodies to the highly conserved fusion loop region of E domain II. Mutations at fusion loop residues W101, L107, and/or G109 significantly reduced the binding of the hMAbs to E protein. The results show that hMAbs directed against the highly conserved E protein fusion loop block viral entry downstream of virus-cell binding by inhibiting E protein-mediated fusion. Characterization of hMAbs targeting this region may provide new insights into DENV vaccine and therapeutic strategies.


PLOS Neglected Tropical Diseases | 2010

Structural Optimization and De Novo Design of Dengue Virus Entry Inhibitory Peptides

Joshua M. Costin; Ekachai Jenwitheesuk; Shee-Mei Lok; Elizabeth Hunsperger; Kelly A. Conrads; Krystal A. Fontaine; Craig R. Rees; Michael G. Rossmann; Sharon Isern; Ram Samudrala; Scott F. Michael

Viral fusogenic envelope proteins are important targets for the development of inhibitors of viral entry. We report an approach for the computational design of peptide inhibitors of the dengue 2 virus (DENV-2) envelope (E) protein using high-resolution structural data from a pre-entry dimeric form of the protein. By using predictive strategies together with computational optimization of binding “pseudoenergies”, we were able to design multiple peptide sequences that showed low micromolar viral entry inhibitory activity. The two most active peptides, DN57opt and 1OAN1, were designed to displace regions in the domain II hinge, and the first domain I/domain II beta sheet connection, respectively, and show fifty percent inhibitory concentrations of 8 and 7 µM respectively in a focus forming unit assay. The antiviral peptides were shown to interfere with virus:cell binding, interact directly with the E proteins and also cause changes to the viral surface using biolayer interferometry and cryo-electron microscopy, respectively. These peptides may be useful for characterization of intermediate states in the membrane fusion process, investigation of DENV receptor molecules, and as lead compounds for drug discovery.


Journal of Virology | 2003

Boudicca, a Retrovirus-Like Long Terminal Repeat Retrotransposon from the Genome of the Human Blood Fluke Schistosoma mansoni

Claudia S. Copeland; Paul J. Brindley; Oliver Heyers; Scott F. Michael; David A. Johnston; David L. Williams; Alasdair Ivens; Bernd H. Kalinna

ABSTRACT The genome of Schistosoma mansoni contains a proviral form of a retrovirus-like long terminal repeat (LTR) retrotransposon, designated Boudicca. Sequence and structural characterization of the new mobile genetic element, which was found in bacterial artificial chromosomes prepared from S. mansoni genomic DNA, revealed the presence of three putative open reading frames (ORFs) bounded by direct LTRs of 328 bp in length. ORF1 encoded a retrovirus-like major homology region and a Cys/His box motif, also present in Gag polyproteins of related retrotransposons and retroviruses. ORF2 encoded enzymatic domains and motifs characteristic of a retrovirus-like polyprotein, including aspartic protease, reverse transcriptase, RNase H, and integrase, in that order, a domain order similar to that of the gypsy/Ty3 retrotransposons. An additional ORF at the 3′ end of the retrotransposon may encode an envelope protein. Phylogenetic comparison based on the reverse transcriptase domain of ORF2 confirmed that Boudicca was a gypsy-like retrotransposon and showed that it was most closely related to CsRn1 from the Oriental liver fluke Clonorchis sinensis and to kabuki from Bombyx mori. Bioinformatics approaches together with Southern hybridization analysis of genomic DNA of S. mansoni and the screening of a bacterial artificial chromosome library representing ≈8-fold coverage of the S. mansoni genome revealed that numerous copies of Boudicca were interspersed throughout the schistosome genome. By reverse transcription-PCR, mRNA transcripts were detected in the sporocyst, cercaria, and adult developmental stages of S. mansoni, indicating that Boudicca is actively transcribed in this trematode.


Journal of Eukaryotic Microbiology | 2002

Sequence survey of the genome of the opportunistic microsporidian pathogen, Vittaforma corneae

Derek Mittleider; Linda C. Green; Victoria H. Mann; Scott F. Michael; Elizabeth S. Didier; Paul J. Brindley

Abstract The microsporidian Vittaforma corneae has been reported as a pathogen of the human stratum corneum, where it can cause keratitis, and is associated with systemic infections. In addition to this direct role as an infectious, etiologic agent of human disease, V. corneae has been used as a model organism for another microsporidian, Enterocytozoon bieneusi, a frequent and problematic pathogen of HIV-infected patients that, unlike V. corneae, is difficult to maintain and to study in vitro. Unfortunately, few molecular sequences are available for V. corneae. In this study, seventy-four genome survey sequences (GSS) were obtained from genomic DNA of spores of laboratory-cultured V. corneae. Approximately, 41 discontinuous kilobases of V. corneae were cloned and sequenced to generate these GSS. Putative identities were assigned to 44 of the V. corneae GSS based on BLASTX searches, representing 21 discrete proteins. Of these 21 deduced V. corneae proteins, only two had been reported previously from other microsporidia (until the recent report of the Encephalitozoon cuniculi genome). Two of the V. corneae proteins were of particular interest, reverse transcriptase and topoisomerase IV (parC). Since the existence of transposable elements in microsporidia is controversial, the presence of reverse transcriptase in V. corneae will contribute to resolution of this debate. The presence of topoisomerase IV was remarkable because this enzyme previously had been identified only from prokaryotes. The 74 GSS included 26.7 kilobases of unique sequences from which two statistics were generated: GC content and codon usage. The GC content of the unique GSS was 42%, lower than that of another microsporidian, E. cuniculi (48% for protein-encoding regions), and substantially higher than that predicted for a third microsporidian, Spraguea lophii (28%). A comparison using the Pearson correlation coefficient showed that codon usage in V. corneae was similar to that in the yeasts, Saccharomyces cerevisiae (r = 0.79) and Shizosaccharomyces pombe (r = 0.70), but was markedly dissimilar to E. cuniculi (r = 0.19).


Antiviral Research | 2011

Viral entry inhibitors block dengue antibody-dependent enhancement in vitro

Cindo O. Nicholson; Joshua M. Costin; Dawne K. Rowe; Li Lin; Ekachai Jenwitheesuk; Ram Samudrala; Sharon Isern; Scott F. Michael

Severe dengue virus (DENV) disease symptoms, including dengue hemorrhagic fever and dengue shock syndrome, have been correlated with the presence of pre-existing antibodies that enhance rather than neutralize infections in Fc receptor bearing cells. These antibodies can originate from previous infection with a different serotype of dengue, or from waning antibody titers that occur in infants and young children as they are weaned from breast milk that contains protective dengue-specific antibodies. Despite the apparent importance of this antibody dependent enhancement (ADE) effect, there has been no description of any specific inhibitors of this process. We explored DENV entry inhibitors as a potential strategy to block ADE. Two different peptide entry inhibitors were tested for the ability to block antibody-mediated DENV-2 infection of human, FcRII bearing K562 cells in vitro. Both peptides were able to inhibit ADE, showing that entry inhibitors are possible candidates for the development of specific treatment for severe DENV infection.

Collaboration


Dive into the Scott F. Michael's collaboration.

Top Co-Authors

Avatar

Sharon Isern

Florida Gulf Coast University

View shared research outputs
Top Co-Authors

Avatar

Joshua M. Costin

Florida Gulf Coast University

View shared research outputs
Top Co-Authors

Avatar

Amanda S. Graham

Florida Gulf Coast University

View shared research outputs
Top Co-Authors

Avatar

Cindo O. Nicholson

Florida Gulf Coast University

View shared research outputs
Top Co-Authors

Avatar

Dawne K. Rowe

Florida Gulf Coast University

View shared research outputs
Top Co-Authors

Avatar

Krystal A. Fontaine

Florida Gulf Coast University

View shared research outputs
Top Co-Authors

Avatar

Ram Samudrala

Florida Gulf Coast University

View shared research outputs
Top Co-Authors

Avatar

Amanda L. Tan

Florida Gulf Coast University

View shared research outputs
Top Co-Authors

Avatar

Ekachai Jenwitheesuk

Florida Gulf Coast University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge