Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott Foster is active.

Publication


Featured researches published by Scott Foster.


Viruses | 2010

Development of CMX001 for the Treatment of Poxvirus Infections.

Randall Lanier; Lawrence C. Trost; Tim Tippin; Bernhard Lampert; Alice Robertson; Scott Foster; Michelle Rose; Wendy Painter; Rose O'mahony; Merrick R. Almond; George R. Painter

CMX001 (phosphonic acid, [[(S)-2-(4-amino-2-oxo-1(2H)-pyrimidinyl)-1-(hydroxymethyl)ethoxy]methyl]mono[3-(hexadecyloxy)propyl] ester) is a lipid conjugate of the acyclic nucleotide phosphonate, cidofovir (CDV). CMX001 is currently in Phase II clinical trials for the prophylaxis of human cytomegalovirus infection and under development using the Animal Rule for smallpox infection. It has proven effective in reduction of morbidity and mortality in animal models of human smallpox, even after the onset of lesions and other clinical signs of disease. CMX001 and CDV are active against all five families of double-stranded DNA (dsDNA) viruses that cause human morbidity and mortality, including orthopoxviruses such as variola virus, the cause of human smallpox. However, the clinical utility of CDV is limited by the requirement for intravenous dosing and a high incidence of acute kidney toxicity. The risk of nephrotoxicity necessitates pre-hydration and probenecid administration in a health care facility, further complicating high volume CDV use in an emergency situation. Compared with CDV, CMX001 has a number of advantages for treatment of smallpox in an emergency including greater potency in vitro against all dsDNA viruses that cause human disease, a high genetic barrier to resistance, convenient oral administration as a tablet or liquid, and no evidence to date of nephrotoxicity in either animals or humans. The apparent lack of nephrotoxicity observed with CMX001 in vivo is because it is not a substrate for the human organic anion transporters that actively secrete CDV into kidney cells. The ability to test the safety and efficacy of CMX001 in patients with life-threatening dsDNA virus infections which share many basic traits with variola is a major advantage in the development of this antiviral for a smallpox indication.


Viruses | 2011

Efficacy of CMX001 as a Post Exposure Antiviral in New Zealand White Rabbits Infected with Rabbitpox Virus, a Model for Orthopoxvirus Infections of Humans

Amanda D. Rice; Mathew M. Adams; Greg Wallace; Andrew M. Burrage; Scott F. Lindsey; Andrew J. Smith; Daniele M. Swetnam; Brandi R. Manning; Stacey A. Gray; Bernhard Lampert; Scott Foster; Randall Lanier; Alice Robertson; George R. Painter; Richard W. Moyer

CMX001, a lipophilic nucleotide analog formed by covalently linking 3-(hexdecyloxy)propan-1-ol to cidofovir (CDV), is being developed as a treatment for smallpox. In the absence of human cases of smallpox, new treatments must be tested for efficacy in animal models. Previously, we demonstrated the efficacy of CMX001 in protecting New Zealand White rabbits from mortality following intradermal infection with rabbitpox virus as a model for smallpox, monkeypox and for treatment of adverse reactions to smallpox vaccination. Here we extend these studies by exploring different dosing regimens and performing randomized, blinded, placebo-controlled studies. In addition, because rabbitpox virus can be transmitted via naturally generated aerosols (animal to animal transmission), we report on studies to test the efficacy of CMX001 in protecting rabbits from lethal rabbitpox virus disease when infection occurs by animal to animal transmission. In all cases, CMX001 treatment was initiated at the onset of observable lesions in the ears to model the use of CMX001 as a treatment for symptomatic smallpox. The results demonstrate that CMX001 is an effective treatment for symptomatic rabbitpox virus infection. The rabbitpox model has key similarities to human smallpox including an incubation period, generalized systemic disease, the occurrence of lesions which may be used as a trigger for initiating therapy, and natural animal to animal spread, making it an appropriate model.


Viruses | 2011

Efficacy of CMX001 as a Prophylactic and Presymptomatic Antiviral Agent in New Zealand White Rabbits Infected with Rabbitpox Virus, a Model for Orthopoxvirus Infections of Humans

Amanda D. Rice; Mathew M. Adams; Bernhard Lampert; Scott Foster; Randall Lanier; Alice Robertson; George R. Painter; Richard W. Moyer

CMX001, a lipophilic nucleotide analog formed by covalently linking 3-(hexdecyloxy)propan-1-ol to cidofovir (CDV), is being developed as a treatment for smallpox. CMX001 has dramatically increased potency versus CDV against all dsDNA viruses and, in contrast to CDV, is orally available and has shown no evidence of nephrotoxicity in healthy volunteers or severely ill transplant patients to date. Although smallpox has been eliminated from the environment, treatments are urgently being sought due to the risk of smallpox being used as a bioterrorism agent and for monkeypox virus, a zoonotic disease of Africa, and adverse reactions to smallpox virus vaccinations. In the absence of human cases of smallpox, new treatments must be tested for efficacy in animal models. Here we first review and discuss the rabbitpox virus (RPV) infection of New Zealand White rabbits as a model for smallpox to test the efficacy of CMX001 as a prophylactic and early disease antiviral. Our results should also be applicable to monkeypox virus infections and for treatment of adverse reactions to smallpox vaccination.


Antiviral Research | 2016

The lipid moiety of brincidofovir is required for in vitro antiviral activity against Ebola virus.

Laura K. McMullan; Mike Flint; Julie Dyall; César G. Albariño; Gene G. Olinger; Scott Foster; Phiroze Sethna; Lisa E. Hensley; Stuart T. Nichol; E. Randall Lanier; Christina F. Spiropoulou

Brincidofovir (BCV) is the 3-hexadecyloxy-1-propanol (HDP) lipid conjugate of the acyclic nucleoside phosphonate cidofovir (CDV). BCV has established broad-spectrum activity against double-stranded DNA (dsDNA) viruses; however, its activity against RNA viruses has been less thoroughly evaluated. Here, we report that BCV inhibited infection of Ebola virus in multiple human cell lines. Unlike the mechanism of action for BCV against cytomegalovirus and other dsDNA viruses, phosphorylation of CDV to the diphosphate form appeared unnecessary. Instead, antiviral activity required the lipid moiety and in vitro activity against EBOV was observed for several HDP-nucleotide conjugates.


Antimicrobial Agents and Chemotherapy | 2014

In Vitro Efficacy of Brincidofovir against Variola Virus

Victoria A. Olson; Scott K. Smith; Scott Foster; Yu Li; E. Randall Lanier; Irina Gates; Lawrence C. Trost; Inger K. Damon

ABSTRACT Brincidofovir (CMX001), a lipid conjugate of the acyclic nucleotide phosphonate cidofovir, is under development for smallpox treatment using “the Animal Rule,” established by the FDA in 2002. Brincidofovir reduces mortality caused by orthopoxvirus infection in animal models. Compared to cidofovir, brincidofovir has increased potency, is administered orally, and shows no evidence of nephrotoxicity. Here we report that the brincidofovir half-maximal effective concentration (EC50) against five variola virus strains in vitro averaged 0.11 μM and that brincidofovir was therefore nearly 100-fold more potent than cidofovir.


Antiviral Research | 2012

Evaluation of disease and viral biomarkers as triggers for therapeutic intervention in respiratory mousepox - an animal model of smallpox.

Scott Parker; Nanhai G. Chen; Scott Foster; Hollyce Hartzler; Ed Hembrador; Dennis E. Hruby; Robert Jordan; Randall Lanier; George R. Painter; Wesley Painter; John E. Sagartz; Jill Schriewer; R. Mark L. Buller

The human population is currently faced with the potential use of natural or recombinant variola and monkeypox viruses as biological weapons. Furthermore, the emergence of human monkeypox in Africa and its expanding environs poses a significant natural threat. Such occurrences would require therapeutic and prophylactic intervention with antivirals to minimize morbidity and mortality of exposed populations. Two orally-bioavailable antivirals are currently in clinical trials; namely CMX001, an ether-lipid analog of cidofovir with activity at the DNA replication stage and ST-246, a novel viral egress inhibitor. Both of these drugs have previously been evaluated in the ectromelia/mousepox system; however, the trigger for intervention was not linked to a disease biomarker or a specific marker of virus replication. In this study we used lethal, intranasal, ectromelia virus infections of C57BL/6 and hairless SKH1 mice to model human disease and evaluate exanthematous rash (rash) as an indicator to initiate antiviral treatment. We show that significant protection can be provided to C57BL/6 mice by CMX001 or ST-246 when therapy is initiated on day 6 post infection or earlier. We also show that significant protection can be provided to SKH1 mice treated with CMX001 at day 3 post infection or earlier, but this is four or more days before detection of rash (ST-246 not tested). Although in this model rash could not be used as a treatment trigger, viral DNA was detected in blood by day 4 post infection and in the oropharyngeal secretions (saliva) by day 2-3 post infection - thus providing robust and specific markers of virus replication for therapy initiation. These findings are discussed in the context of current respiratory challenge animal models in use for the evaluation of poxvirus antivirals.


Antiviral Research | 2014

Co-administration of the broad-spectrum antiviral, brincidofovir (CMX001), with smallpox vaccine does not compromise vaccine protection in mice challenged with ectromelia virus.

Scott Parker; Ryan W. Crump; Scott Foster; Hollyce Hartzler; Ed Hembrador; E. Randall Lanier; George R. Painter; Jill Schriewer; Lawrence C. Trost; R. Mark L. Buller

Natural orthopoxvirus outbreaks such as vaccinia, cowpox, cattlepox and buffalopox continue to cause morbidity in the human population. Monkeypox virus remains a significant agent of morbidity and mortality in Africa. Furthermore, monkeypox viruss broad host-range and expanding environs make it of particular concern as an emerging human pathogen. Monkeypox virus and variola virus (the etiological agent of smallpox) are both potential agents of bioterrorism. The first line response to orthopoxvirus disease is through vaccination with first-generation and second-generation vaccines, such as Dryvax and ACAM2000. Although these vaccines provide excellent protection, their widespread use is impeded by the high level of adverse events associated with vaccination using live, attenuated virus. It is possible that vaccines could be used in combination with antiviral drugs to reduce the incidence and severity of vaccine-associated adverse events, or as a preventive in individuals with uncertain exposure status or contraindication to vaccination. We have used the intranasal mousepox (ectromelia) model to evaluate the efficacy of vaccination with Dryvax or ACAM2000 in conjunction with treatment using the broad spectrum antiviral, brincidofovir (BCV, CMX001). We found that co-treatment with BCV reduced the severity of vaccination-associated lesion development. Although the immune response to vaccination was quantifiably attenuated, vaccination combined with BCV treatment did not alter the development of full protective immunity, even when administered two days following ectromelia challenge. Studies with a non-replicating vaccine, ACAM3000 (MVA), confirmed that BCVs mechanism of attenuating the immune response following vaccination with live virus was, as expected, by limiting viral replication and not through inhibition of the immune system. These studies suggest that, in the setting of post-exposure prophylaxis, co-administration of BCV with vaccination should be considered a first response to a smallpox emergency in subjects of uncertain exposure status or as a means of reduction of the incidence and severity of vaccine-associated adverse events.


The Journal of Infectious Diseases | 2016

Analysis of Mutations in the Gene Encoding Cytomegalovirus DNA Polymerase in a Phase 2 Clinical Trial of Brincidofovir Prophylaxis.

E. Randall Lanier; Scott Foster; Tom Brundage; Sunwen Chou; Mark N. Prichard; Steven Kleiboeker; Chad Wilson; Donella Colville; Herve Mommeja-Marin

Brincidofovir is an oral antiviral in development for prevention of cytomegalovirus disease. Cytomegalovirus genotyping results from a phase 2 trial comparing brincidofovir to placebo for prophylaxis against cytomegalovirus infection in hematopoietic cell transplant recipients provided initial data on the clinical resistance profile for brincidofovir. In this study, no known resistance-associated mutations were detected in brincidofovir-treated subjects; identified genotypic substitutions did not confer resistance to cytomegalovirus antivirals in vitro, suggesting that these changes represent polymorphisms unrelated to brincidofovir resistance. Lack of evidence for genotypic resistance during prophylaxis suggests that first-line use of brincidofovir for prevention of cytomegalovirus infection may preserve downstream options for patients.


Antiviral Research | 2017

Efficacy of delayed brincidofovir treatment against a lethal rabbitpox virus challenge in New Zealand White rabbits

Irma M. Grossi; Scott Foster; Melicia R. Gainey; Robert Krile; John A. Dunn; Thomas M. Brundage; Jody M. Khouri

Abstract In the event of a bioterror attack with variola virus (smallpox), exposure may only be identified following onset of fever. To determine if antiviral therapy with brincidofovir (BCV; CMX001) initiated at, or following, onset of fever could prevent severe illness and death, a lethal rabbitpox model was used. BCV is in advanced development as an antiviral for the treatment of smallpox under the US Food and Drug Administrations ‘Animal Rule’. This pivotal study assessed the efficacy of immediate versus delayed treatment with BCV following onset of symptomatic disease in New Zealand White rabbits intradermally inoculated with a lethal rabbitpox virus (RPXV), strain Utrecht. Infected rabbits with confirmed fever were randomized to blinded treatment with placebo, BCV, or BCV delayed by 24, 48, or 72 h. The primary objective evaluated the survival benefit with BCV treatment. The assessment of reduction in the severity and progression of clinical events associated with RPXV were secondary objectives. Clinically and statistically significant reductions in mortality were observed when BCV was initiated up to 48 h following the onset of fever; survival rates were 100%, 93%, and 93% in the immediate treatment, 24‐h, and 48‐h delayed treatment groups, respectively, versus 48% in the placebo group (p < 0.05 for each vs. placebo). Significant improvements in clinical and virologic parameters were also observed. These findings provide a scientific rationale for therapeutic intervention with BCV in the event of a smallpox outbreak when vaccination is contraindicated or when diagnosis follows the appearance of clinical signs and symptoms. HighlightsBrincidofovir (BCV) reduced mortality from rabbitpox virus infection administered at or before the midpoint of disease.BCV treatment was associated with decreased peak viral loads, which may reduce disease infectivity.BCV does not prevent the development of post‐exposure immunity.BCV is a smallpox treatment option in populations where vaccination may be contraindicated.


Biology of Blood and Marrow Transplantation | 2018

A randomized, double-blind, placebo-controlled phase 3 trial of oral brincidofovir for cytomegalovirus prophylaxis in allogeneic hematopoietic-cell transplantation

Francisco M. Marty; Drew J. Winston; Roy F. Chemaly; Kathleen M. Mullane; Tsiporah Shore; Genovefa A. Papanicolaou; Greg Chittick; Thomas M. Brundage; Chad Wilson; Marion E. Morrison; Scott Foster; W. Garrett Nichols; Michael Boeckh

Cytomegalovirus (CMV) infection is a common complication of allogeneic hematopoietic cell transplantation (HCT). In this trial, we randomized adult CMV-seropositive HCT recipients without CMV viremia at screening 2:1 to receive brincidofovir or placebo until week 14 post-HCT. Randomization was stratified by center and risk of CMV infection. Patients were assessed weekly through week 15 and every third week thereafter through week 24 post-HCT. Patients who developed clinically significant CMV infection (CS-CMVi; CMV viremia requiring preemptive therapy or CMV disease) discontinued the study drug and began anti-CMV treatment. The primary endpoint was the proportion of patients with CS-CMVi through week 24 post-HCT; patients who discontinued the trial or with missing data were imputed as primary endpoint events. Between August 2013 and June 2015, 452 patients were randomized at a median of 15 days after HCT and received study drug. The proportion of patients who developed CS-CMVi or were imputed as having a primary endpoint event through week 24 was similar between brincidofovir-treated patients and placebo recipients (155 of 303 [51.2%] versus 78 of 149 [52.3%]; odds ratio, .95 [95% confidence interval, .64 to 1.41]; P = .805); fewer brincidofovir recipients developed CMV viremia through week 14 compared with placebo recipients (41.6%; P < .001). Serious adverse events were more frequent among brincidofovir recipients (57.1% versus 37.6%), driven by acute graft-versus-host disease (32.3% versus 6.0%) and diarrhea (6.9% versus 2.7%). Week 24 all-cause mortality was 15.5% among brincidofovir recipients and 10.1% among placebo recipients. Brincidofovir did not reduce CS-CMVi by week 24 post-HCT and was associated with gastrointestinal toxicity.

Collaboration


Dive into the Scott Foster's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge