Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott G. Morham is active.

Publication


Featured researches published by Scott G. Morham.


Cell | 2001

Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding.

Jennifer E. Garrus; Uta K. von Schwedler; Owen Pornillos; Scott G. Morham; Kenton Zavitz; Hubert E. Wang; Daniel Wettstein; Kirsten M. Stray; Mélanie Côté; Rebecca L. Rich; David G. Myszka; Wesley I. Sundquist

Like other enveloped viruses, HIV-1 uses cellular machinery to bud from infected cells. We now show that Tsg101 protein, which functions in vacuolar protein sorting (Vps), is required for HIV-1 budding. The UEV domain of Tsg101 binds to an essential tetrapeptide (PTAP) motif within the p6 domain of the structural Gag protein and also to ubiquitin. Depletion of cellular Tsg101 by small interfering RNA arrests HIV-1 budding at a late stage, and budding is rescued by reintroduction of Tsg101. Dominant negative mutant Vps4 proteins that inhibit vacuolar protein sorting also arrest HIV-1 and MLV budding. These observations suggest that retroviruses bud by appropriating cellular machinery normally used in the Vps pathway to form multivesicular bodies.


Cell | 1995

Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration

Robert Langenbach; Scott G. Morham; Howard F. Tiano; Charles D. Loftin; Burhan I. Ghanayem; Patricia C. Chulada; Joel Mahler; Christopher A. Lee; Eugenia H. Goulding; Kimberly D. Kluckman; Hwan Kim; Oliver Smithies

Cyclooxygenases 1 and 2 (COX-1 and COX-2) are key enzymes in prostaglandin biosynthesis and the target enzymes for the widely used nonsteroidal anti-inflammatory drugs. To study the physiological roles of the individual isoforms, we have disrupted the mouse Ptgs1 gene encoding COX-1. Homozygous Ptgs1 mutant mice survive well, have no gastric pathology, and show less indomethacin-induced gastric ulceration than wild-type mice, even though their gastric prostaglandin E2 levels are about 1% of wild type. The homozygous mutant mice have reduced platelet aggregation and a decreased inflammatory response to arachidonic acid, but not to tetradecanoyl phorbol acetate. Ptgs1 homozygous mutant females mated to homozygous mutant males produce few live offspring. COX-1-deficient mice provide a useful model to distinguish the physiological roles of COX-1 and COX-2.


Cell | 1995

Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse

Scott G. Morham; Robert Langenbach; Charles D. Loftin; Howard F. Tiano; Nectarios Vouloumanos; J. Charles Jennette; Joel Mahler; Kimberly D. Kluckman; Aric Ledford; Christopher A. Lee; Oliver Smithies

The prostaglandin endoperoxide H synthase isoform 2, cyclooxygenase 2 (COX-2), is induced at high levels in migratory and other responding cells by pro-inflammatory stimuli. COX-2 is generally considered to be a mediator of inflammation. Its isoform, COX-1, is constitutively expressed in most tissues and is thought to mediate housekeeping functions. These two enzymes are therapeutic targets of the widely used nonsteroidal anti-inflammatory drugs (NSAIDs). To investigate further the different physiologic roles of these isoforms, we have used homologous recombination to disrupt the mouse gene encoding COX-2 (Ptgs2). Mice lacking COX-2 have normal inflammatory responses to treatments with tetradecanoyl phorbol acetate or with arachidonic acid. However, they develop severe nephropathy and are susceptible to peritonitis.


Cell | 2003

The Protein Network of HIV Budding

Uta K. von Schwedler; Melissa Stuchell; Barbara Müller; Diane M. Ward; Hyo Young Chung; Eiji Morita; Hubert E. Wang; Thaylon Davis; Gong Ping He; Daniel M. Cimbora; Anna Scott; Hans-Georg Kräusslich; Jerry Kaplan; Scott G. Morham; Wesley I. Sundquist

HIV release requires TSG101, a cellular factor that sorts proteins into vesicles that bud into multivesicular bodies (MVB). To test whether other proteins involved in MVB biogenesis (the class E proteins) also participate in HIV release, we identified 22 candidate human class E proteins. These proteins were connected into a coherent network by 43 different protein-protein interactions, with AIP1 playing a key role in linking complexes that act early (TSG101/ESCRT-I) and late (CHMP4/ESCRT-III) in the pathway. AIP1 also binds the HIV-1 p6(Gag) and EIAV p9(Gag) proteins, indicating that it can function directly in virus budding. Human class E proteins were found in HIV-1 particles, and dominant-negative mutants of late-acting human class E proteins arrested HIV-1 budding through plasmal and endosomal membranes. These studies define a protein network required for human MVB biogenesis and indicate that the entire network participates in the release of HIV and probably many other viruses.


The EMBO Journal | 2007

Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis

Eiji Morita; Virginie Sandrin; Hyo Young Chung; Scott G. Morham; Steven P. Gygi; Christopher K. Rodesch; Wesley I. Sundquist

TSG101 and ALIX both function in HIV budding and in vesicle formation at the multivesicular body (MVB), where they interact with other Endosomal Sorting Complex Required for Transport (ESCRT) pathway factors required for release of viruses and vesicles. Proteomic analyses revealed that ALIX and TSG101/ESCRT‐I also bind a series of proteins involved in cytokinesis, including CEP55, CD2AP, ROCK1, and IQGAP1. ALIX and TSG101 concentrate at centrosomes and are then recruited to the midbodies of dividing cells through direct interactions between the central CEP55 ‘hinge’ region and GPP‐based motifs within TSG101 and ALIX. ESCRT‐III and VPS4 proteins are also recruited, indicating that much of the ESCRT pathway localizes to the midbody. Depletion of ALIX and TSG101/ESCRT‐I inhibits the abscission step of HeLa cell cytokinesis, as does VPS4 overexpression, confirming a requirement for these proteins in cell division. Furthermore, ALIX point mutants that block CEP55 and CHMP4/ESCRT‐III binding also inhibit abscission, indicating that both interactions are essential. These experiments suggest that the ESCRT pathway may be recruited to facilitate analogous membrane fission events during HIV budding, MVB vesicle formation, and the abscission stage of cytokinesis.


Endocrinology | 1999

ANOVULATION IN CYCLOOXYGENASE-2-DEFICIENT MICE IS RESTORED BY PROSTAGLANDIN E2 AND INTERLEUKIN-1BETA

Barbara J. Davis; David E. Lennard; Christopher A. Lee; Howard F. Tiano; Scott G. Morham; William C. Wetsel; Robert Langenbach

Mice carrying a null mutation for either of the two cyclooxygenase (COX) isoenzymes, necessary for prostanoid production, exhibit several isotype-specific reproductive abnormalities. Mice deficient in COX-1 are fertile but have decreased pup viability, whereas mice deficient in COX-2 fail to ovulate and have abnormal implantation and decidualization responses. The present study identifies the specific contribution of each COX isoenzyme in hypothalamic, pituitary, and ovarian function and establishes the pathology and rescue of the anovulatory syndrome in the COX-2-deficient mouse. In both COX-1- and COX-2-deficient mice, pituitary gonadotropins were selectively increased, whereas hypothalamic LHRH and serum gonadotropin levels were similar to those in wild-type animals (+/+). No significant differences in serum estrogen or progesterone were noted among the three genotypes. Exogenous gonadotropin stimulation with PMSG and hCG produced a comparable 4-fold increase in ovarian PGE2 levels in wild-type and COX...


Journal of Clinical Investigation | 2000

Impaired mucosal defense to acute colonic injury in mice lacking cyclooxygenase-1 or cyclooxygenase-2

Olivier Morteau; Scott G. Morham; Rance K. Sellon; Levinus A. Dieleman; Robert Langenbach; Oliver Smithies; R. Balfour Sartor

To investigate roles in intestinal inflammation for the 2 cyclooxygenase (COX) isoforms, we determined susceptibility to spontaneous and induced acute colitis in mice lacking either the COX-1 or COX-2 isoform. We treated wild-type, COX-1(-/-), COX-2(-/-), and heterozygous mice with dextran sodium sulfate (DSS) to provoke acute colonic inflammation, and we quantified tissue damage, prostaglandin (PG) E(2), and interleukin-1beta. No spontaneous gastrointestinal inflammation was detected in mice homozygous for either mutation, despite almost undetectable basal intestinal PGE(2) production in COX-1(-/-) mice. Both COX-1(-/-) and COX-2(-/-) mice showed increased susceptibility to a low-dose of DSS that caused mild colonic epithelial injury in wild-type mice. COX-2(-/-) mice were more susceptible than COX-1(-/-) mice, and selective pharmacologic blockade of COX-2 potentiated injury in COX-1(-/-) mice. At a high dose, DSS treatment was fatal to 50% of the animals in each mutant group, but all wild-type mice survived. DSS treatment increased PGE(2) intestinal secretion in all groups except COX-2(-/-) mice. These results demonstrate that COX-1 and COX-2 share a crucial role in the defense of the intestinal mucosa (with inducible COX-2 being perhaps more active during inflammation) and that neither isoform is essential in maintaining mucosal homeostasis in the absence of injurious stimuli.


Journal of Cell Biology | 2003

HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein

Owen Pornillos; Daniel S. Higginson; Kirsten M. Stray; Robert D. Fisher; Jennifer E. Garrus; Marielle Payne; Gong Ping He; Hubert E. Wang; Scott G. Morham; Wesley I. Sundquist

The HIV-1 Gag protein recruits the cellular factor Tsg101 to facilitate the final stages of virus budding. A conserved P(S/T)AP tetrapeptide motif within Gag (the “late domain”) binds directly to the NH2-terminal ubiquitin E2 variant (UEV) domain of Tsg101. In the cell, Tsg101 is required for biogenesis of vesicles that bud into the lumen of late endosomal compartments called multivesicular bodies (MVBs). However, the mechanism by which Tsg101 is recruited from the cytoplasm onto the endosomal membrane has not been known. Now, we report that Tsg101 binds the COOH-terminal region of the endosomal protein hepatocyte growth factor–regulated tyrosine kinase substrate (Hrs; residues 222–777). This interaction is mediated, in part, by binding of the Tsg101 UEV domain to the Hrs 348PSAP351 motif. Importantly, Hrs222–777 can recruit Tsg101 and rescue the budding of virus-like Gag particles that are missing native late domains. These observations indicate that Hrs normally functions to recruit Tsg101 to the endosomal membrane. HIV-1 Gag apparently mimics this Hrs activity, and thereby usurps Tsg101 and other components of the MVB vesicle fission machinery to facilitate viral budding.


Molecular Cell | 2000

Loss of E2F4 activity leads to abnormal development of multiple cellular lineages.

Rachel E. Rempel; M. Teresa Sáenz-Robles; Robert W. Storms; Scott G. Morham; Seiichi Ishida; Amber Engel; Laszlo Jakoi; Mona F. Melhem; James M. Pipas; Clay Smith; Joseph R. Nevins

We have generated mice deficient in E2F4 activity, the major form of E2F in many cell types. Analysis of newborn pups deficient in E2F4 revealed abnormalities in hematopoietic lineage development as well as defects in the development of the gut epithelium. Specifically, we observed a deficiency of various mature hematopoietic cell types together with an increased number of immature cells in several lineages. This was associated with an increased frequency of apoptotic cells. We also found a substantial reduction in the thickness of the gut epithelium that normally gives rise to crypts as well as a reduction in the density of villi. These observations suggest a critical role for E2F4 activity in controlling the maturation of cells in a number of tissues.


Molecular and Cellular Biology | 1996

Targeted disruption of the mouse topoisomerase I gene by camptothecin selection.

Scott G. Morham; Kimberly D. Kluckman; Nectarios Voulomanos; Oliver Smithies

Topoisomerase I has ubiquitous roles in important cellular functions such as replication, transcription, and recombination. In order to further characterize this enzyme in vivo, we have used gene targeting to inactivate the mouse Top-1 gene. A selection protocol using the topoisomerase I inhibitor camptothecin facilitated isolation of embryonic stem cell clones containing an inactivated allele; isolation of correctly targeted clones was enhanced 75-fold over that achieved by normal selection procedures. The disrupted Top-1 allele is embryonic lethal when homozygous, and development of such embryos fails between the 4- and 16-cell stages. Both sperm and oocytes containing the inactive allele maintain viability through the fertilization point, and thus gene expression of topoisomerase I is not required for gamete viability. These studies demonstrate that topoisomerase I is essential for cell growth and division in vivo. The Top-1 gene was also shown to be linked to the agouti locus.

Collaboration


Dive into the Scott G. Morham's collaboration.

Top Co-Authors

Avatar

Robert Langenbach

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oliver Smithies

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Howard F. Tiano

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher A. Lee

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles D. Loftin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge