Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott H. Brewer is active.

Publication


Featured researches published by Scott H. Brewer.


Biochemistry | 2009

Probing Protein Folding Using Site-Specifically Encoded Unnatural Amino Acids as FRET Donors with Tryptophan

Shigeki J. Miyake-Stoner; Andrew Miller; Jared T. Hammill; Jennifer C. Peeler; Kenneth R. Hess; Ryan A. Mehl; Scott H. Brewer

The experimental study of protein folding is enhanced by the use of nonintrusive probes that are sensitive to local conformational changes in the protein structure. Here, we report the selection of an aminoacyl-tRNA synthetase/tRNA pair for the cotranslational, site-specific incorporation of two unnatural amino acids that can function as fluorescence resonance energy transfer (FRET) donors with Trp to probe the disruption of the hydrophobic core upon protein unfolding. l-4-Cyanophenylalanine (pCNPhe) and 4-ethynylphenylalanine (pENPhe) were incorporated into the hydrophobic core of the 171-residue protein, T4 lysozyme. The FRET donor ability of pCNPhe and pENPhe is evident by the overlap of the emission spectra of pCNPhe and pENPhe with the absorbance spectrum of Trp. The incorporation of both unnatural amino acids in place of a phenylalanine in the hydrophobic core of T4 lysozyme was well tolerated by the protein, due in part to the small size of the cyano and ethynyl groups. The hydrophobic nature of the ethynyl group of pENPhe suggests that this unnatural amino acid is a more conservative substitution into the hydrophobic core of the protein compared to pCNPhe. The urea-induced disruption of the hydrophobic core of the protein was probed by the change in FRET efficiency between either pCNPhe or pENPhe and the Trp residues in T4 lysozyme. The methodology for the study of protein conformational changes using FRET presented here is of general applicability to the study of protein structural changes, since the incorporation of the unnatural amino acids is not inherently limited by the size of the protein.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The helix–turn–helix motif as an ultrafast independently folding domain: The pathway of folding of Engrailed homeodomain

Tomasz L. Religa; Christopher M. Johnson; Dung M. Vu; Scott H. Brewer; R. Brian Dyer; Alan R. Fersht

Helices 2 and 3 of Engrailed homeodomain (EnHD) form a helix–turn–helix (HTH) motif. This common motif is believed not to fold independently, which is the characteristic feature of a motif rather than a domain. But we found that the EnHD HTH motif is monomeric and folded in solution, having essentially the same structure as in full-length protein. It had a sigmoidal thermal denaturation transition. Both native backbone and local tertiary interactions were formed concurrently at 4 × 105 s−1 at 25°C, monitored by IR and fluorescence T-jump kinetics, respectively, the same rate constant as for the fast phase in the folding of EnHD. The HTH motif, thus, is an ultrafast-folding, natural protein domain. Its independent stability and appropriate folding kinetics account for the stepwise folding of EnHD, satisfy fully the criteria for an on-pathway intermediate, and explain the changes in mechanism of folding across the homeodomain family. Experiments on mutated and engineered fragments of the parent protein with different probes allowed the assignment of the observed kinetic phases to specific events to show that EnHD is not an example of one-state downhill folding.


Journal of Alloys and Compounds | 2002

Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces: correlation of reflectivity, skin depth, and plasmon frequency with conductivity

Scott H. Brewer; Stefan Franzen

Variable angle reflectance FTIR was used to investigate the reflectance of thin films of either indium tin oxide (ITO) or fluorine-doped tin oxide (SFO) on glass substrates in the mid-IR. The reflectance was observed to depend on the incident angle, wavenumber, and the polarization used. The Drude model and the Fresnel equations for reflection at a single dielectric boundary were used to interpret these results in terms of the conductivity, reflectivity, skin depth, and plasmon frequency of the metal oxides. The skin depth of thin film ITO electrodes was found to depend on the sheet resistance linearly, while the reflectance varied according to the square root of the sheet resistance. The method shows that an optical probe can be used to determine the electrical properties of metal oxide films in a noninvasive approach.


Biochemistry | 2009

Interpretation of p-Cyanophenylalanine Fluorescence in Proteins in Terms of Solvent Exposure and Contribution of Side-Chain Quenchers: A Combined Fluorescence, IR and Molecular Dynamics Study

Humeyra Taskent-Sezgin; Juah Chung; Vadim Patsalo; Shigeki J. Miyake-Stoner; Andrew Miller; Scott H. Brewer; Ryan A. Mehl; David F. Green; Daniel P. Raleigh; Isaac Carrico

The use of noncoded amino acids as spectroscopic probes of protein folding and function is growing rapidly, in large part because of advances in the methodology for their incorporation. Recently p-cyanophenylalanine has been employed as a fluorescence and IR probe, as well as a FRET probe to study protein folding, protein-membrane interactions, protein-protein interactions and amyloid formation. The probe has been shown to be exquisitely sensitive to hydrogen bonding interactions involving the cyano group, and its fluorescence quantum yield increases dramatically when it is hydrogen bonded. However, a detailed understanding of the factors which influence its fluorescence is required to be able to use this popular probe accurately. Here we demonstrate the recombinant incorporation of p-cyanophenylalanine in the N-terminal domain of the ribosomal protein L9. Native state fluorescence is very low, which suggests that the group is sequestered from solvent; however, IR measurements and molecular dynamics simulations show that the cyano group is exposed to solvent and forms hydrogen bonds to water. Analysis of mutant proteins and model peptides demonstrates that the reduced native state fluorescence is caused by the effective quenching of p-cyanophenylalanine fluorescence via FRET to tyrosine side-chains. The implications for the interpretation of p-cyanophenylalanine fluorescence measurements and FRET studies are discussed.


Journal of Chemical Physics | 2003

A quantitative theory and computational approach for the vibrational Stark effect

Scott H. Brewer; Stefan Franzen

Density functional theory (DFT) has been used to calculate the vibrational Stark tuning rates of a variety of nitriles and carbonyls in quantitative agreement with experimental values with a correction factor of f=1.1 for the local electric field. These calculations show that the vibrational Stark tuning rate has an anharmonic contribution and a contribution due to geometric distortions caused in the molecules due to the applied electric field. The anharmonic and geometric distortion components of the vibrational Stark tuning rate were calculated by the frequency dependence of the CN or CO stretching mode with varying applied electric fields by using the optimized structure in zero applied field or allowing the structure to optimize in the applied electric field, respectively. The changes in the calculated frequency of the CN or CO stretching mode, bond length, and dipole moment of this bond with varying applied electric fields are shown. The transition polarizability and the difference polarizability wer...


Journal of Physical Chemistry B | 2012

Expanding the utility of 4-cyano-L-phenylalanine as a vibrational reporter of protein environments.

Christopher G. Bazewicz; Jacob S. Lipkin; Emily E. Smith; Melanie T. Liskov; Scott H. Brewer

The ability to genetically incorporate amino acids modified with spectroscopic reporters site-specifically into proteins with high efficiency and fidelity has greatly enhanced the ability to probe local protein structure and dynamics. Here, we have synthesized the unnatural amino acid (UAA), 4-cyano-L-phenylalanine (pCNPhe), containing the nitrile vibrational reporter and three isotopomers ((15)N, (13)C, (13)C(15)N) of this UAA to enhance the ability of pCNPhe to study local protein environments. Each pCNPhe isotopic variant was genetically incorporated in an efficient, site-specific manner into superfolder green fluorescent protein (sfGFP) in response to an amber codon with high fidelity utilizing an engineered, orthogonal aminoacyl-tRNA synthetase. The isotopomers of 4-cyano-L-phenylalanine permitted the nitrile symmetric stretch vibration of these UAAs to be unambiguously assigned utilizing the magnitude and direction of the isotopic shift of this vibration. The sensitivity of the nitrile symmetric stretching frequency of each isotopic variant to the local environment was measured by individually incorporating the probes into two distinct local environments of sfGFP. The UAAs were also utilized in concert to probe multiple local environments in sfGFP simultaneously to increase the utility of 4-cyano-L-phenylalanine.


Journal of Physical Chemistry B | 2013

Sensitive, Site-Specific, and Stable Vibrational Probe of Local Protein Environments: 4-Azidomethyl-L-Phenylalanine

Christopher G. Bazewicz; Melanie T. Liskov; Kevin J. Hines; Scott H. Brewer

We have synthesized the unnatural amino acid (UAA), 4-azidomethyl-L-phenylalanine (pN₃CH₂Phe), to serve as an effective vibrational reporter of local protein environments. The position, extinction coefficient, and sensitivity to local environment of the azide asymmetric stretch vibration of pN₃CH₂Phe are compared to the vibrational reporters: 4-cyano-L-phenylalanine (pCNPhe) and 4-azido-L-phenylalanine (pN₃Phe). This UAA was genetically incorporated in a site-specific manner utilizing an engineered, orthogonal aminoacyl-tRNA synthetase in response to an amber codon with high efficiency and fidelity into two distinct sites in superfolder green fluorescent protein (sfGFP). This allowed for the dependence of the azide asymmetric stretch vibration of pN₃CH₂Phe to different protein environments to be measured. The photostability of pN₃CH₂Phe was also measured relative to the photoreactive UAA, pN₃Phe.


Journal of Physical Chemistry B | 2011

Probing local environments with the infrared probe: L-4-nitrophenylalanine.

Emily E. Smith; Barton Y. Linderman; Austin C. Luskin; Scott H. Brewer

The genetic incorporation of unnatural amino acids (UAAs) with high efficiency and fidelity is a powerful tool for the study of protein structure and dynamics with site-specificity in a relatively nonintrusive manner. Here, we illustrate the ability of L-4-nitrophenylalanine to serve as a sensitive IR probe of local protein environments in the 247 residue superfolder green fluorescent protein (sfGFP). Specifically, the nitro symmetric stretching frequency of L-4-nitrophenylalanine was shown to be sensitive to both solvents that mimic different protein environments and (15)N isotopic labeling of the three-atom nitro group of this UAA. (14)NO(2) and (15)NO(2) variants of this UAA were incorporated utilizing an engineered orthogonal aminoacyl-tRNA synthetase/tRNA pair into a solvent exposed and a partially buried position in sfGFP with high efficiency and fidelity. The combination of isotopic labeling and difference FTIR spectroscopy permitted the nitro symmetric stretching frequency of L-4-nitrophenylalanine to be experimentally measured at either site in sfGFP. The (14)NO(2) symmetric stretching frequency red-shifted 7.7 cm(-1) between the solvent exposed and partially buried position, thus illustrating the ability of this UAA to serve as an effective IR probe of local protein environments.


RSC Advances | 2015

Synthesis and Protein Incorporation of Azido-Modified Unnatural Amino Acids

Elise M. Tookmanian; Edward E. Fenlon; Scott H. Brewer

Two new azidophenylalanine residues (3 and 4) have been synthesized and, in combination with 4-azido-L-phenylalanine (1) and 4-azidomethyl-L-phenylalanine (2), form a series of unnatural amino acids (UAAs) containing the azide vibrational reporter at varying distances from the aromatic ring of phenylalanine. These UAAs were designed to probe protein hydration with high spatial resolution by utilizing the large extinction coefficient and environmental sensitivity of the azide asymmetric stretch vibration. The sensitivity of the azide reporters was investigated in solvents that mimic distinct local protein environments. Three of the four azido-modified phenylalanine residues were successfully genetically incorporated into a surface site in superfolder green fluorescent protein (sfGFP) utilizing an engineered, orthogonal aminoacyl-tRNA synthetase in response to an amber codon with high efficiency and fidelity. SDS-PAGE and ESI-Q-TOF mass analysis verified the site-specific incorporation of these UAAs. The observed azide asymmetric stretch in the linear IR spectra of these UAAs incorporated into sfGFP indicated that the azide groups were hydrated in the protein.


Biochemistry | 2012

Early turn formation and chain collapse drive fast folding of the major cold shock protein CspA of Escherichia coli.

Dung M. Vu; Scott H. Brewer; R. Brian Dyer

The folding mechanism of the β-sheet protein CspA, the major cold shock protein of Escherichia coli, was previously reported to be a concerted, two-state process. We have reexamined the folding of CspA using multiple spectroscopic probes of the equilibrium transition and laser-induced temperature jump (T-jump) to achieve better time resolution of the kinetics. Equilibrium temperature-dependent Fourier transform infrared (1634 cm(-1)) and tryptophan fluorescence measurements reveal probe-dependent thermal transitions with midpoints (T(m)) of 66 ± 1 and 61 ± 1 °C, respectively. Singular-value decomposition analysis with global fitting of the temperature-dependent infrared (IR) difference spectra reveals two spectral components with distinct melting transitions with different midpoints. T-jump relaxation measurements of CspA probed by IR and fluorescence spectroscopy show probe-dependent multiexponential kinetics characteristic of non-two-state folding. The frequency-dependent IR transients all show biphasic relaxation with average time constants of 50 ± 7 and 225 ± 25 μs at a T(f) of 77 °C and almost equal amplitudes. Similar biphasic kinetics are observed using Trp fluorescence of the wild-type protein and the Y42W and T68W mutants, with comparable lifetimes. All of these observations support a model for the folding of CspA through a compact intermediate state. The transient IR and fluorescence spectra are consistent with a diffuse intermediate having β-turns and substantial β-sheet structure. The loop β3-β4 structure is likely not folded in the intermediate state, allowing substantial solvent penetration into the barrel structure.

Collaboration


Dive into the Scott H. Brewer's collaboration.

Top Co-Authors

Avatar

Stefan Franzen

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dung M. Vu

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Simon E. Lappi

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge