Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott I. Kavanaugh is active.

Publication


Featured researches published by Scott I. Kavanaugh.


General and Comparative Endocrinology | 2009

The origins of the vertebrate hypothalamic–pituitary–gonadal (HPG) and hypothalamic–pituitary–thyroid (HPT) endocrine systems: New insights from lampreys

Stacia A. Sower; Mihael Freamat; Scott I. Kavanaugh

The acquisition of a hypothalamic-pituitary axis was a seminal event in vertebrate evolution leading to the neuroendocrine control of many complex functions including growth, reproduction, osmoregulation, stress and metabolism. Lampreys as basal vertebrates are the earliest evolved vertebrates for which there are demonstrated functional roles for two gonadotropin-releasing hormones (GnRHs) that act via the hypothalamic-pituitary-gonadal axis controlling reproductive processes. With the availability of the lamprey genome, we have identified a novel GnRH form (lamprey GnRH-II) and a novel glycoprotein hormone receptor, lGpH-R II (thyroid-stimulating hormone-like receptor). Based on functional studies, in situ hybridization and phylogenetic analysis, we hypothesize that the newly identified lamprey GnRH-II is an ancestral GnRH to the vertebrate GnRHs. This finding opens a new understanding of the GnRH family and can help to delineate the evolution of the complex neuro/endocrine axis of reproduction. A second glycoprotein hormone receptor (lGpH-R II) was also identified in the sea lamprey. The existing data suggest the existence of a primitive, overlapping yet functional HPG and HPT endocrine systems in this organism, involving one possibly two pituitary glycoprotein hormones and two glycoprotein hormone receptors as opposed to three or four glycoprotein hormones interacting specifically with three receptors in gnathostomes. We hypothesize that the glycoprotein hormone/glycoprotein hormone receptor systems emerged as a link between the neuro-hormonal and peripheral control levels during the early stages of gnathostome divergence. The significance of the results obtained by analysis of the HPG/T axes in sea lamprey may transcend the limited scope of the corresponding physiological compartments by providing important clues in respect to the interplay between genome-wide events (duplications), coding sequence (mutation) and expression control level evolutionary mechanisms in definition of the chemical control pathways in vertebrates.


Endocrinology | 2008

Origins of Gonadotropin-Releasing Hormone (GnRH) in Vertebrates: Identification of a Novel GnRH in a Basal Vertebrate, the Sea Lamprey

Scott I. Kavanaugh; Masumi Nozaki; Stacia A. Sower

We cloned a cDNA encoding a novel (GnRH), named lamprey GnRH-II, from the sea lamprey, a basal vertebrate. The deduced amino acid sequence of the newly identified lamprey GnRH-II is QHWSHGWFPG. The architecture of the precursor is similar to that reported for other GnRH precursors consisting of a signal peptide, decapeptide, a downstream processing site, and a GnRH-associated peptide; however, the gene for lamprey GnRH-II does not have introns in comparison with the gene organization for all other vertebrate GnRHs. Lamprey GnRH-II precursor transcript was widely expressed in a variety of tissues. In situ hybridization of the brain showed expression and localization of the transcript in the hypothalamus, medulla, and olfactory regions, whereas immunohistochemistry using a specific antiserum showed only GnRH-II cell bodies and processes in the preoptic nucleus/hypothalamus areas. Lamprey GnRH-II was shown to stimulate the hypothalamic-pituitary axis using in vivo and in vitro studies. Lamprey GnRH-II was also shown to activate the inositol phosphate signaling system in COS-7 cells transiently transfected with the lamprey GnRH receptor. These studies provide evidence for a novel lamprey GnRH that has a role as a third hypothalamic GnRH. In summary, the newly discovered lamprey GnRH-II offers a new paradigm of the origin of the vertebrate GnRH family. We hypothesize that due to a genome/gene duplication event, an ancestral gene gave rise to two lineages of GnRHs: the gnathostome GnRH and lamprey GnRH-II.


The Journal of Clinical Endocrinology and Metabolism | 2011

Novel FGF8 mutations associated with recessive holoprosencephaly, craniofacial defects, and hypothalamo-pituitary dysfunction

Mark J. McCabe; Carles Gaston-Massuet; Vaitsa Tziaferi; Louise Gregory; Kyriaki S. Alatzoglou; Massimo Signore; Eduardo Puelles; Dianne Gerrelli; I. Sadaf Farooqi; Jamal Raza; Joanna Walker; Scott I. Kavanaugh; Pei-San Tsai; Nelly Pitteloud; Juan Pedro Martinez-Barbera; Mehul T. Dattani

CONTEXT Fibroblast growth factor (FGF) 8 is important for GnRH neuronal development with human mutations resulting in Kallmann syndrome. Murine data suggest a role for Fgf8 in hypothalamo-pituitary development; however, its role in the etiology of wider hypothalamo-pituitary dysfunction in humans is unknown. OBJECTIVE The objective of this study was to screen for FGF8 mutations in patients with septo-optic dysplasia (n = 374) or holoprosencephaly (HPE)/midline clefts (n = 47). METHODS FGF8 was analyzed by PCR and direct sequencing. Ethnically matched controls were then screened for mutated alleles (n = 480-686). Localization of Fgf8/FGF8 expression was analyzed by in situ hybridization in developing murine and human embryos. Finally, Fgf8 hypomorphic mice (Fgf8(loxPNeo/-)) were analyzed for the presence of forebrain and hypothalamo-pituitary defects. RESULTS A homozygous p.R189H mutation was identified in a female patient of consanguineous parentage with semilobar HPE, diabetes insipidus, and TSH and ACTH insufficiency. Second, a heterozygous p.Q216E mutation was identified in a female patient with an absent corpus callosum, hypoplastic optic nerves, and Moebius syndrome. FGF8 was expressed in the ventral diencephalon and anterior commissural plate but not in Rathkes pouch, strongly suggesting early onset hypothalamic and corpus callosal defects in these patients. This was consolidated by significantly reduced vasopressin and oxytocin staining neurons in the hypothalamus of Fgf8 hypomorphic mice compared with controls along with variable hypothalamo-pituitary defects and HPE. CONCLUSION We implicate FGF8 in the etiology of recessive HPE and potentially septo-optic dysplasia/Moebius syndrome for the first time to our knowledge. Furthermore, FGF8 is important for the development of the ventral diencephalon, hypothalamus, and pituitary.


General and Comparative Endocrinology | 2003

Pheromonal stimulation of spawning release of gametes by gonadotropin releasing hormone in the chiton, Mopalia sp.

Aubrey Gorbman; Arthur H. Whiteley; Scott I. Kavanaugh

The chiton Mopalia sp., a mollusc, was exposed to various dilutions of gonadotropin releasing hormone (GnRH) in sea water to determine whether this peptide is capable of acting as a pheromone that could stimulate release of ripe gametes (spawning). Two of the peptides, lamprey GnRH-1 and tunicate GnRH-2, had this action at a higher concentration (1.0 mg/L) but dilutions to 50 microg/L no longer were effective. Three other GnRHs: lamprey GnRH-3, tunicate GnRH-1, and a modified chicken GnRH-2, had no such action under the same test conditions. Since the spawning response could be produced by some GnRHs and not by others, it would appear that some kind of molecular recognition is involved, possibly by specific binding to a receptor. In earlier preliminary experiments tunicate GnRH-2 rapidly stimulated gamete release in a hemichordate, Saccoglossus. Thus it is suggested that GnRHs, in at least some invertebrates, may function as pheromones, serving to stimulate simultaneous spawning of individuals in a population of animals, and in this way assure more successful fertilization in species that must release their gametes into the water in which they live.


Invertebrate Neuroscience | 2008

The identification and distribution of gonadotropin-releasing hormone-like peptides in the central nervous system and ovary of the giant freshwater prawn, Macrobrachium rosenbergii

Piyada Ngernsoungnern; Scott I. Kavanaugh; Stacia A. Sower; Prasert Sobhon; Prapee Sretarugsa

In the present study, we demonstrated the existence of GnRH-like peptides in the central nervous system (CNS) and ovary of the giant freshwater prawn, Macrobrachium rosenbergii using immunocytochemistry. The immunoreactivity (ir) of lamprey (l) GnRH-III was detected in the soma of medium-sized neurons located in neuronal cluster number 11 in the middle part of supraesophageal ganglion (deutocerebrum), whereas ir-octopus (oct) GnRH was observed in the soma of both medium-sized and large-sized neurons in thoracic ganglia, as well as in the fibers innervating the other medium-sized and large-sized neuronal cell bodies in the thoracic ganglia. In addition, ir-lGnRH-I was observed in the cytoplasm of late previtellogenic oocyte and early vitellogenic oocyte. These data suggest that M. rosenbergii contain at least three isoforms of GnRH: two GnRH isoforms closely related to lGnRH-III and octGnRH in the CNS, whereas another isoform, closely related to lGnRH-I, was localized in the ovary. This finding provides supporting data that ir-GnRH-like peptide(s) may exist in this decapod crustacean.


General and Comparative Endocrinology | 2011

Seasonal changes of brain GnRH-I, -II, and -III during the final reproductive period in adult male and female sea lamprey.

Stacia A. Sower; Eileen Balz; Allisan Aquilina-Beck; Scott I. Kavanaugh

Sea lampreys are anadromous and semelparous, i.e., they spawn only once in their lifetime, after which they die. Sexual maturation is thus a synchronized process coordinated with the life stages of the lamprey. Recently, a novel gonadotropin-releasing hormone, lamprey GnRH-II (lGnRH-II), was identified in lampreys and suggested to have a hypothalamic role in reproduction (Kavanaugh et al., 2008). To further understand the role of lGnRH-II, changes in ovarian morphology, brain gonadotropin-releasing hormone (lGnRH-I, -II, and -III), and plasma estradiol were examined during the final two months of the reproductive season of adult male and female sea lamprey. The results showed significant correlations between water temperature, fluctuation of brain GnRHs, plasma estradiol and reproductive stages during this time. In males, lGnRH-I concentration increased early in the season, peaked, then declined with a subsequent increase with the final maturational stages. In comparison, lGnRH-II and -III concentrations were also elevated early in the season in males, dropped and then peaked in mid-season with a subsequent decline of lGnRH-II or increase of lGnRH-III at spermiation. In females, lGnRH-III concentration peaked in mid-season with a drop at ovulation while lGnRH-I remained unchanged during the season. In contrast, lGnRH-II concentrations in females were elevated at the beginning of the season and then dropped and remained low during the rest of the season. In summary, these data provide evidence that there are seasonal and differential changes of the three GnRHs during this final reproductive period suggesting specific roles for each of the GnRHs in male and female reproduction.


General and Comparative Endocrinology | 2012

Gonadotropin-releasing hormone in protostomes: insights from functional studies on Aplysia californica.

Biao Sun; Scott I. Kavanaugh; Pei-San Tsai

Several protostomian molecules that structurally resemble chordate gonadotropin-releasing hormone (GnRH) have been identified through cloning, biochemical purification or data mining. These molecules share considerable sequence and structural similarities with chordate GnRH, leading to the current belief that protostomian and chordate forms of GnRH share a common ancestor. However, the physiological significance of these protostomian GnRH-like molecules remains poorly understood. This knowledge gap hampers our understanding of how GnRH has evolved functionally over time. This review provides a summary of our recent functional characterization of a GnRH-like molecule (ap-GnRH) in a gastropod mollusk, Aplysia californica, and presents preliminary proof for a cognate ap-GnRH receptor (ap-GnRHR). Our data reveal that ap-GnRH is a general neural regulator capable of exerting diverse central and motor effects, but plays little or no role in reproductive activation. This notion is supported by the abundance of a putative ap-GnRHR transcript in the central nervous system and the foot. Comparing these results to the available functional data from a cephalopod mollusk, Octopus vulgaris, we surmise that protostomian GnRH-like molecules are likely to assume a wide range of physiological roles, and reproductive activation is not an evolutionarily conserved role of these molecules. Future functional studies using suitable protostomian models are required to identify functional changes in protostomian GnRH-like molecules that accompany major taxa-level transitions.


PLOS ONE | 2014

Localization and Functional Characterization of a Novel Adipokinetic Hormone in the Mollusk, Aplysia californica

Joshua I. Johnson; Scott I. Kavanaugh; Cindy Nguyen; Pei-San Tsai

Increasing evidence suggests that gonadotropin-releasing hormone (GnRH), corazonin, adipokinetic hormone (AKH), and red pigment-concentrating hormone all share common ancestry to form a GnRH superfamily. Despite the wide presence of these peptides in protostomes, their biological effects remain poorly characterized in many taxa. This study had three goals. First, we cloned the full-length sequence of a novel AKH, termed Aplysia-AKH, and examined its distribution in an opisthobranch mollusk, Aplysia californica. Second, we investigated in vivo biological effects of Aplysia-AKH. Lastly, we compared the effects of Aplysia-AKH to a related A. californica peptide, Aplysia-GnRH. Results suggest that Aplysia-AKH mRNA and peptide are localized exclusively in central tissues, with abdominal, cerebral, and pleural ganglia being the primary sites of Aplysia-AKH production. However, Aplysia-AKH-positive fibers were found in all central ganglia, suggesting diverse neuromodulatory roles. Injections of A. californica with Aplysia-AKH significantly inhibited feeding, reduced body mass, increased excretion of feces, and reduced gonadal mass and oocyte diameter. The in vivo effects of Aplysia-AKH differed substantially from Aplysia-GnRH. Overall, the distribution and biological effects of Aplysia-AKH suggest it has diverged functionally from Aplysia-GnRH over the course of evolution. Further, that both Aplysia-AKH and Aplysia-GnRH failed to activate reproduction suggest the critical role of GnRH as a reproductive activator may be a phenomenon unique to vertebrates.


Endocrinology | 2012

Molecular Cloning and Pharmacological Characterization of Two Novel GnRH Receptors in the Lamprey (Petromyzon marinus)

Nerine T. Joseph; Allisan Aquilina-Beck; Caryn MacDonald; Wayne A. Decatur; Jeffrey A. Hall; Scott I. Kavanaugh; Stacia A. Sower

This paper reports the identification, expression, binding kinetics, and functional studies of two novel type III lamprey GnRH receptors (lGnRH-R-2 and lGnRH-R-3) in the sea lamprey, a basal vertebrate. These novel GnRH receptors share the structural features and amino acid motifs common to other known gnathostome GnRH receptors. The ligand specificity and activation of intracellular signaling studies showed ligands lGnRH-II and -III induced an inositol phosphate (IP) response at lGnRH-R-2 and lGnRH-R-3, whereas the ligand lGnRH-I did not stimulate an IP response. lGnRH-II was a more potent activator of lGnRH-R-3 than lGnRH-III. Stimulation of lGnRH-R-2 and lGnRH-R-3 testing all three lGnRH ligands did not elicit a cAMP response. lGnRH-R-2 has a higher binding affinity in response to lGnRH-III than lGnRH-II, whereas lGnRH-R-3 has a higher binding affinity in response to lGnRH-II than IGnRH-III. lGnRH-R-2 precursor transcript was detected in a wide variety of tissues including the pituitary whereas lGnRH-R-3 precursor transcript was not as widely expressed and primarily expressed in the brain and eye of male and female lampreys. From our phylogenetic analysis, we propose that lGnRH-R-1 evolved from a common ancestor of all vertebrate GnRH receptors and lGnRH-R-2 and lGnRH-R-3 likely occurred due to a gene duplication within the lamprey lineage. In summary, we propose from our findings of receptor subtypes in the sea lamprey that the evolutionary recruitment of specific pituitary GnRH receptor subtypes for particular physiological functions seen in later evolved vertebrates was an ancestral character that first arose in a basal vertebrate.


General and Comparative Endocrinology | 2016

Ancient origins of metazoan gonadotropin-releasing hormone and their receptors revealed by phylogenomic analyses

David C. Plachetzki; Pei-San Tsai; Scott I. Kavanaugh; Stacia A. Sower

The discovery of genes related to gonadotropin-releasing hormones (GnRH) and their receptors from diverse species has driven important advances in comparative endocrinology. However, our view of the evolutionary histories and nomenclature of these gene families has become inconsistent as several different iterations of GnRH and receptor relationships have been proposed. Whole genome sequence data are now available for most of the major lineages of animals, and an exhaustive view of the phylogenies of GnRH and their receptors is now possible. In this paper, we leverage data from publically available whole genome sequences to present a new phylogenomic analysis of GnRH and GnRH receptors and the distant relatives of each across metazoan phylogeny. Our approach utilizes a phylogenomics pipeline that searches data from 36 whole genome sequences and conducts phylogenetic analyses of gene trees. We provide a comprehensive analysis of the major groupings of GnRH peptides, related hormones and their receptors and provide some suggestions for a new nomenclature. Our study provides a framework for understanding the functional diversification of this family of neuromodulatory peptides and their receptors.

Collaboration


Dive into the Scott I. Kavanaugh's collaboration.

Top Co-Authors

Avatar

Stacia A. Sower

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Pei-San Tsai

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Leah R. Brooks

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Adam R. Root

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Biao Sun

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Brooke K. Tata

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mickie L. Powell

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Mihael Freamat

University of New Hampshire

View shared research outputs
Researchain Logo
Decentralizing Knowledge