Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott J. Mellender is active.

Publication


Featured researches published by Scott J. Mellender.


Neuroscience Letters | 2016

Effects of rapamycin pretreatment on blood-brain barrier disruption in cerebral ischemia-reperfusion.

Oak Z. Chi; Scott J. Mellender; Sylviana Barsoum; Xia Liu; Stacey Damito; Harvey R. Weiss

The mammalian target of rapamycin (mTOR) pathway is essential in neuronal survival and repair in cerebral ischemia. Decreases in blood-brain barrier (BBB) disruption are associated with a decrease in neuronal damage in cerebral ischemia. This study was performed to investigate how pre-inhibition of the mTOR pathway with rapamycin would affect BBB disruption and the size of the infarcted cortical area in the early stage of focal cerebral ischemia-reperfusion using quantitative analysis of BBB disruption. Rats were treated with 20mg/kg of rapamycin i.p. once a day for 2days (Rapamycin Group) or vehicle (Control Group) before transient middle cerebral artery (MCA) occlusion. After one hour of MCA occlusion and two hours of reperfusion, the transfer coefficient (Ki) of (14)C-α-aminoisobutyric acid ((14)C-AIB) to measure the degree of BBB disruption and the size of the cortical infarct were determined. Ischemia-reperfusion increased the Ki in the Rapamycin treated (+15%) as well as in the untreated control group (+13%). However, rapamycin pretreatment moderately decreased Ki in the contralateral (-30%) as well as in the ischemic-reperfused (-29%) cortex when compared with the untreated control group. Rapamycin pretreatment substantially increased the percentage of cortical infarct compared with the control group (+56%). Our data suggest that activation of mTOR pathway is necessary for neuronal survival in the early stage of cerebral ischemia-perfusion and that the reason for the enlarged cortical infarct by rapamycin pretreatment may be related to its non-BBB effects on the mTOR pathway.


Neuroscience | 2016

Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia.

Oak Z. Chi; Sylviana Barsoum; Nicole M. Vega-Cotto; Estela Jacinto; Xia Liu; Scott J. Mellender; Harvey R. Weiss

Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia-reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1h and reperfusion for 2h with and without rapamycin (20mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C(14)-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5±0.8% control vs. 21.5±0.9% rapamycin). We also found that ischemia-reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia-reperfusion.


Neuroscience Letters | 2017

Rapamycin decreased blood-brain barrier permeability in control but not in diabetic rats in early cerebral ischemia

Oak Z. Chi; Geza K. Kiss; Scott J. Mellender; Xia Liu; Harvey R. Weiss

Diabetes causes functional and structural changes in blood-brain barrier (BBB). The mammalian target of rapamycin (mTOR) has been associated with glucose metabolism, diabetes, and altering BBB permeability. Since there is only a narrow therapeutic window (3h) for stroke victims, it is important to investigate BBB disruption in the early stage of cerebral ischemia. We compared the degree of BBB disruption in diabetic and in control rats at two hours of reperfusion after one hour of middle cerebral artery (MCA) occlusion with or without inhibition of mTOR. Two weeks after streptozotocin ip to induce diabetes, MCA occlusion was performed. In half of the rats, an mTOR inhibitor, rapamycin was given for 2days before MCA occlusion. After one hour of MCA occlusion and two hours of the reperfusion, the transfer coefficient (Ki) of 14C-α-aminoisobutyric acid was determined to quantify degree of BBB disruption. Ischemia-reperfusion increased the Ki in the control animals. Streptozotocin increased the Ki in the ischemic-reperfused (IR-C, +22%) as well as in the contralateral cortex (CC, +40%). Rapamycin decreased the Ki in the IR-C (-32%) as well as in the CC (-26%) in the control rats. However, rapamycin did not affect Ki in the IR-C or in the CC in the diabetic rats. Our data demonstrated a greater BBB disruption in diabetes in the ischemic as well as non-ischemic cortex even in the early stage of cerebral ischemia-reperfusion and that acute administration of rapamycin did not significantly affect BBB permeability in diabetes. From our quantitative analysis of BBB disruption, the vulnerability of BBB in diabetes has been emphasized in the early stage of cerebral ischemia-reperfusion and a less important role of the mTOR pathway is suggested in altering BBB permeability in diabetes.


Current Neurovascular Research | 2017

Hypoxic Preconditioning Increases Blood-Brain Barrier Disruption in the Early Stages of Cerebral Ischemia

Oak Z. Chi; Scott J. Mellender; Sylviana Barsoum; Xia Liu; Harvey R. Weiss

Even though hypoxic preconditioning has been reported to produce neuroprotection, its effect on blood-brain barrier (BBB) disruption in the early stages of cerebral ischemia within the therapeutic window is not clear. Since hypoxic preconditioning increases expression of vascular endothelial growth factor (VEGF) that modulates vascular permeability, the effects of hypoxic preconditioning and VEGF on BBB permeability were investigated after one hour of focal cerebral ischemia. Rats were exposed to 8% of oxygen for two hours or room air and then 24 hours later, permanent middle cerebral artery (MCA) occlusion was performed. In some of the hypoxic preconditioned rats, a VEGF-A antibody was applied to the ischemic cortex one hour before MCA occlusion. One hour after MCA occlusion, the transfer coefficient (Ki) of 14C-α-aminoisobutyric acid was determined to measure the degree of BBB disruption. MCA occlusion increased the Ki when compared with the contralateral cortex (14.1 ± 4.0 vs 4.2 ± 1.9 μL/g/min, p < 0.0001). Hypoxic preconditioning further increased the Ki in the ischemic cortex when compared with the control rats (25.1 ± 8.7 μL/g/min, p < 0.01). Application of VEGF antibody to the ischemic cortex of the hypoxic preconditioned animals reduced the Ki to the level of the control rats (13.6 ± 5.1 μL/g/min, p < 0.01). Our data demonstrated that hypoxic preconditioning increased BBB disruption through a VEGF related pathway and suggest the possibility of aggravation of brain edema by hypoxic preconditioning in the early stages of cerebral ischemia.


Brain Research Bulletin | 2017

Blood -brain barrier disruption was less under isoflurane than pentobarbital anesthesia via a PI3K/Akt pathway in early cerebral ischemia

Oak Z. Chi; Scott J. Mellender; Geza K. Kiss; Xia Liu; Harvey R. Weiss

One of the important factors altering the degree of blood-brain barrier (BBB) disruption in cerebral ischemia is the anesthetic used. The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway has been reported to be involved in modulating BBB permeability and in isoflurane induced neuroprotection. This study was performed to compare the degree of BBB disruption in focal cerebral ischemia under isoflurane vs pentobarbital anesthesia and to determine whether inhibition of PI3K/Akt would affect the disruption in the early stage of focal cerebral ischemia. Permanent middle cerebral artery (MCA) occlusion was performed in rats under 1.4% isoflurane or pentobarbital (50mg/kg i.p.) anesthesia with controlled ventilation. In half of each group LY294002, which is a PI3K/Akt inhibitor, was applied on the ischemic cortex immediately after MCA occlusion. After one hour of MCA occlusion, the transfer coefficient (Ki) of 14C-α-aminoisobutyric acid (14C-AIB) was determined to quantify the degree of BBB disruption. MCA occlusion increased the Ki both in the isoflurane and pentobarbital anesthetized rats. However, the value of Ki was lower under isoflurane (11.5±6.0μL/g/min) than under pentobarbital (18.3±7.1μL/g/min) anesthesia. The Ki of the contralateral cortex of the pentobarbital group was higher (+74%) than that of the isoflurane group. Application of LY294002 on the ischemic cortex increased the Ki (+99%) only in the isoflurane group. The degree of BBB disruption by MCA occlusion was significantly lower under isoflurane than pentobarbital anesthesia in the early stage of cerebral ischemia. Our data demonstrated the importance of choice of anesthetics and suggest that PI3K/Akt signaling pathway plays a significant role in altering BBB disruption in cerebral ischemia during isoflurane but not during pentobarbital anesthesia.


Neuroscience Letters | 2018

Activation of Akt by SC79 decreased cerebral infarct in early cerebral ischemia-reperfusion despite increased BBB disruption

Xia Liu; Geza K. Kiss; Scott J. Mellender; Harvey R. Weiss; Oak Z. Chi

Activation of Akt has been suggested to produce neuronal protection in cerebral ischemia. Decreasing blood-brain barrier (BBB) disruption has been associated with a better neuronal outcome in cerebral ischemia. We hypothesized that activation of Akt would decrease BBB disruption and contribute to decreasing the size of infarct in the early stage of cerebral ischemia-reperfusion within the therapeutic window. Transient middle cerebral artery occlusion (MCAO) was performed in rats under isoflurane anesthesia with controlled ventilation. Rats were treated with SC79 (a selective Akt activator which is cell and BBB permeable) 0.05 mg/kg × 3 i.p. or vehicle i.p. perioperatively. After one hour of MCAO and two hours of reperfusion, the transfer coefficient (Ki) of 14C-α-aminoisobutyric acid (14C-AIB, molecular weight 104 Da) and the volume of 3H-dextran (molecular weight 70,000 Da) distribution were determined to measure the degree of BBB disruption. At the same time point, the size of infarction was determined using tetrazolium staining. In an additional group of rats, a higher dose of SC79 (0.5 mg/kg × 3) was administered to determine the size of infarct. Administration of SC79 increased the Ki in the ischemic-reperfused cortex (IR-C, +32%, p < 0.05) as well as in the contralateral cortex (CC, +35%, p < 0.05) when compared with the untreated animals with MCAO/reperfusion. The volume of dextran distribution was not significantly changed by SC79. SC79 treatment significantly produced a decrease in the percentage of cortical infarct out of total cortical area (12.7 ± 1.7% vs 6.9 ± 0.9%, p < 0.001). Increasing the dose of SC79 by ten times did not significantly affect the size of cortical infarct. Contrary to our hypothesis, our data demonstrated that SC79 decreased the size of the infarct in the ischemic-reperfused cortex despite an increase in BBB disruption. Our data suggest the importance of activation of Akt for neuronal survival in the early stage of cerebral ischemia-reperfusion within the therapeutic window and that the mechanism of neuroprotection may not be related to the BBB effects of SC79.


Journal of investigative medicine high impact case reports | 2018

An Unusual Cause of Failure to Ventilate

John T. Denny; Sagar S. Mungekar; Benjamin R. Landgraf; Zoe M. Rocke; Valerie A. McRae; Christian P. McDonough; James Tse; Scott J. Mellender; Geza K. Kiss

We report an unusual case of endotracheal tube failure. It was due to a manufacturing defect in the internal white plastic piece that is normally depressed by the luer-lock syringe within the blue pilot balloon. Prior to use, the endotracheal tube was tested and functioned normally. A 64-year-old patient in the intensive care unit with a history of hypertension was being mechanically ventilated after uneventful abdominal surgery. After several hours in the intensive care unit, he was noted to be suddenly no longer receiving adequate tidal volumes from the ventilator. It was found that the cuff on the endotracheal tube was not retaining air when it was filled with air from a syringe. This lead to a large “leak” around the endotracheal tube such that the intended tidal volumes set on the ventilator were not delivered to the patient. The patient was uneventfully reintubated and did well. Subsequent investigation revealed the cause to be a manufacturing defect in the internal white plastic piece that is normally depressed by the luer-lock syringe within the blue pilot balloon. Other mechanisms of cuff failure are reviewed in this case report. This case is an unusual reason for cuff failure. Illustrations supplied alert the reader how to identify the appearance of this manufacturing defect in a pilot balloon. This case illustrates the potential device malfunctions that can develop during a procedure, even when the equipment has been tested and previously functioned well. Even small defects developing in well-engineered products can lead to critical patient care emergencies.


Journal of investigative medicine high impact case reports | 2018

Varicella Pneumonia: Case Report and Review of a Potentially Lethal Complication of a Common Disease:

John T. Denny; Zoe M. Rocke; Valerie A. McRae; Julia E. Denny; Christine H. Fratzola; Sajjad Ibrar; Joyce Bonitz; James Tse; Shaul Cohen; Scott J. Mellender; Geza K. Kiss

Varicella zoster virus causes varicella (chickenpox). It can be reactivated endogenously many years later to cause herpes zoster (shingles). Although varicella is usually a benign disease in healthy children, it resulted in over 11 000 hospitalizations and over 100 deaths every year, in all ages, in the United States. Morbidity was considerably worse in older teenagers and adults. Between 5% and 15% of cases of adult chickenpox will produce some form of pulmonary illness. Progression to pneumonia risk factors include pregnancy, age, smoking, chronic obstructive pulmonary disease, and immunosuppression. Typically, pulmonary symptoms occur 1 to 6 days after varicella zoster infection. They often include cough, fever, and dyspnea. Treatment is a 7-day course of intravenous acyclovir for varicella pneumonia. Early intervention may modify the course of this complication. This review illustrates practical features with a case of a 34-year-old female with severe varicella pneumonia. Despite the lack of significant past medical history and absence of immunosuppression, her pneumonia worsened and by using continuous positive airway pressure mask, intubation was avoided. More important, the radiographic progression of severe varicella pneumonia is shown. This highlights how a common disease of varicella can progress in an adult and manifest with significant organ malfunction.


Regional Anesthesia and Pain Medicine | 2014

Sphenopalatine ganglion block: a safer alternative to epidural blood patch for postdural puncture headache.

Shaul Cohen; Daniel Ramos; William Grubb; Scott J. Mellender; Adil Mohiuddin; Antonio Chiricolo


Surgical Clinics of North America | 2006

Neonatal and childhood perioperative considerations.

Randall S. Burd; Scott J. Mellender; Joseph D. Tobias

Collaboration


Dive into the Scott J. Mellender's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph D. Tobias

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge