Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott James Harrison is active.

Publication


Featured researches published by Scott James Harrison.


Metabolic Engineering | 2015

Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae

Tadas Jakočiūnas; Ida Bonde; Markus J. Herrgård; Scott James Harrison; Mette Kristensen; Lasse Eggers Pedersen; Michael Krogh Jensen; Jay D. Keasling

CRISPR/Cas9 is a simple and efficient tool for targeted and marker-free genome engineering. Here, we report the development and successful application of a multiplex CRISPR/Cas9 system for genome engineering of up to 5 different genomic loci in one transformation step in bakers yeast Saccharomyces cerevisiae. To assess the specificity of the tool we employed genome re-sequencing to screen for off-target sites in all single knock-out strains targeted by different gRNAs. This extensive analysis identified no more genome variants in CRISPR/Cas9 engineered strains compared to wild-type reference strains. We applied our genome engineering tool for an exploratory analysis of all possible single, double, triple, quadruple and quintuple gene disruption combinations to search for strains with high mevalonate production, a key intermediate for the industrially important isoprenoid biosynthesis pathway. Even though we did not overexpress any genes in the mevalonate pathway, this analysis identified strains with mevalonate titers greater than 41-fold compared to the wild-type strain. Our findings illustrate the applicability of this highly specific and efficient multiplex genome engineering approach to accelerate functional genomics and metabolic engineering efforts.


Analytical and Bioanalytical Chemistry | 2009

From differentiating metabolites to biomarkers

Albert Koulman; Geoffrey A. Lane; Scott James Harrison; Dietrich A. Volmer

The current developments in metabolomics and metabolic profiling technologies have led to the discovery of several new metabolic biomarkers. Finding metabolites present in significantly different levels between sample sets, however, does not necessarily make these metabolites useful biomarkers. The route to valid and applicable biomarkers (biomarker qualification) is long and demands a significant amount of work. In this overview, we critically discuss the current state-of-the-art of metabolic biomarker discovery, with highlights and shortcomings, and suggest a pathway to clinical usefulness.


Microbial Cell Factories | 2015

CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae

Carlotta Ronda; Jerome Maury; Tadas Jakočiu̅nas; Simo Abdessamad Jacobsen; Susanne Manuela Germann; Scott James Harrison; Irina Borodina; Jay D. Keasling; Michael Krogh Jensen; Alex Toftgaard Nielsen

BackgroundOne of the bottlenecks in production of biochemicals and pharmaceuticals in Saccharomyces cerevisiae is stable and homogeneous expression of pathway genes. Integration of genes into the genome of the production organism is often a preferred option when compared to expression from episomal vectors. Existing approaches for achieving stable simultaneous genome integrations of multiple DNA fragments often result in relatively low integration efficiencies and furthermore rely on the use of selection markers.ResultsHere, we have developed a novel method, CrEdit (CRISPR/Cas9 mediated genome Editing), which utilizes targeted double strand breaks caused by CRISPR/Cas9 to significantly increase the efficiency of homologous integration in order to edit and manipulate genomic DNA. Using CrEdit, the efficiency and locus specificity of targeted genome integrations reach close to 100% for single gene integration using short homology arms down to 60 base pairs both with and without selection. This enables direct and cost efficient inclusion of homology arms in PCR primers. As a proof of concept, a non-native β-carotene pathway was reconstructed in S. cerevisiae by simultaneous integration of three pathway genes into individual intergenic genomic sites. Using longer homology arms, we demonstrate highly efficient and locus-specific genome integration even without selection with up to 84% correct clones for simultaneous integration of three gene expression cassettes.ConclusionsThe CrEdit approach enables fast and cost effective genome integration for engineering of S. cerevisiae. Since the choice of the targeting sites is flexible, CrEdit is a powerful tool for diverse genome engineering applications.


Transfusion | 2016

Identified metabolic signature for assessing red blood cell unit quality is associated with endothelial damage markers and clinical outcomes

Aarash Bordbar; Pär I. Johansson; Giuseppe Paglia; Scott James Harrison; Kristine Wichuk; Manuela Magnusdottir; Sóley Valgeirsdóttir; Mikkel Gybel-Brask; Sisse R. Ostrowski; Sirus Palsson; Ottar Rolfsson; Olafur E. Sigurjonsson; Morten Bagge Hansen; Sveinn Gudmundsson; Bernhard O. Palsson

There has been interest in determining whether older red blood cell (RBC) units have negative clinical effects. Numerous observational studies have shown that older RBC units are an independent factor for patient mortality. However, recently published randomized clinical trials have shown no difference of clinical outcome for patients receiving old or fresh RBCs. An overlooked but essential issue in assessing RBC unit quality and ultimately designing the necessary clinical trials is a metric for what constitutes an old or fresh RBC unit.


Metabolic Engineering | 2014

Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance

Kanchana Rueksomtawin Kildegaard; Björn M. Hallström; Thomas Blicher; Nikolaus Sonnenschein; Niels Bjerg Jensen; Svetlana Sherstyk; Scott James Harrison; Jerome Maury; Markus J. Herrgård; Agnieszka Sierakowska Juncker; Jochen Förster; Jens Nielsen; Irina Borodina

Biologically produced 3-hydroxypropionic acid (3 HP) is a potential source for sustainable acrylates and can also find direct use as monomer in the production of biodegradable polymers. For industrial-scale production there is a need for robust cell factories tolerant to high concentration of 3 HP, preferably at low pH. Through adaptive laboratory evolution we selected S. cerevisiae strains with improved tolerance to 3 HP at pH 3.5. Genome sequencing followed by functional analysis identified the causal mutation in SFA1 gene encoding S-(hydroxymethyl)glutathione dehydrogenase. Based on our findings, we propose that 3 HP toxicity is mediated by 3-hydroxypropionic aldehyde (reuterin) and that glutathione-dependent reactions are used for reuterin detoxification. The identified molecular response to 3 HP and reuterin may well be a general mechanism for handling resistance to organic acid and aldehydes by living cells.


Nature Methods | 2016

Predictable tuning of protein expression in bacteria

Mads Bonde; Margit Pedersen; Michael Schantz Klausen; Sheila Ingemann Jensen; Tune Wulff; Scott James Harrison; Alex Toftgaard Nielsen; Markus Herrgard; Morten Otto Alexander Sommer

We comprehensively assessed the contribution of the Shine-Dalgarno sequence to protein expression and used the data to develop EMOPEC (Empirical Model and Oligos for Protein Expression Changes; http://emopec.biosustain.dtu.dk). EMOPEC is a free tool that makes it possible to modulate the expression level of any Escherichia coli gene by changing only a few bases. Measured protein levels for 91% of our designed sequences were within twofold of the desired target level.


Food Chemistry | 2012

Non-targeted analysis of tea by hydrophilic interaction liquid chromatography and high resolution mass spectrometry.

Karl Fraser; Scott James Harrison; Geoff A. Lane; Don E. Otter; Yacine Hemar; Siew Young Quek; Susanne Rasmussen

Tea is the second most consumed beverage in the world and its consumption has been associated with numerous potential health benefits. Factors such as fermentation methods, geographical origin and season can affect the primary and secondary metabolite composition of tea. In this study, a hydrophilic interaction liquid chromatography (HILIC) method coupled to high resolution mass spectrometry in both positive and negative ionisation modes was developed and optimised. The method when combined with principal component analysis to analyse three different types of tea, successfully distinguished samples into different categories, and provided evidence of the metabolites which differed between them. The accurate mass and high resolution attributes of the mass spectrometric data were utilised and relative quantification data were extracted post-data acquisition on 18 amino acids, showing significant differences in amino acid concentrations between tea types and countries. This study highlights the potential of HILIC chromatography combined with non-targeted mass spectrometric methods to provide a comprehensive understanding of polar metabolites in plant extracts.


Food Chemistry | 2013

Monitoring tea fermentation/manufacturing by direct analysis in real time (DART) mass spectrometry

Karl Fraser; Geoff A. Lane; Don E. Otter; Scott James Harrison; Siew Young Quek; Yacine Hemar; Susanne Rasmussen

Factors such as fermentation methods, geographical origin and season can affect the biochemical composition of tea leaves (Camellia sinensis L.). In this study, the biochemical composition of oolong tea during the manufacturing and fermentation process was studied using a non-targeted method utilising ambient ionisation with a direct analysis in real time (DART) ion source and mass spectrometry (MS). Caffeine dominated the positive ionisation spectra throughout the manufacturing process, while the negative ion spectra collected during manufacturing were rich in ions likely to be surface lipids. Correlation analyses on the spectra revealed two volatile compounds tentatively identified as indole and geranic acid, along with ammonium and caffeine clusters/adducts with geranic acid that increased in concentration during the fermentation stages of the process. The tentative identifications were assigned using a combination of DART-ion-trap MS(n) and DART-accurate mass MS(1) and MS(2) on tea samples and standard compounds. This study highlights the potential of DART-MS to rapidly monitor the progress of complex manufacturing processes such as tea fermentation.


Analytical Chemistry | 2012

Linear Ion Trap MSn of Enzymatically Synthesized 13C-Labeled Fructans Revealing Differentiating Fragmentation Patterns of β (1-2) and β (1-6) Fructans and Providing a Tool for Oligosaccharide Identification in Complex Mixtures

Scott James Harrison; Hong Xue; Geoff A. Lane; Silas G. Villas-Bôas; Susanne Rasmussen

Fructans are polymeric carbohydrates, which play important roles as plant reserve carbohydrates and stress protectants, and are beneficial for human health and animal production. Fructans are formed by the addition of β-d-fructofuranosyl units to sucrose, leading to very complex mixtures of 1-kestose based inulins, 6-kestose linked levans, and 6G-kestose derived neoseries inulins and levans in cool season grasses such as Lolium perenne. The identification of isomeric fructan oligomers in chromatographic analysis of crude plant extracts is often hampered by the lack of authentic standards, and unambiguous peak assignment usually requires time-consuming analyses of purified fructan oligomers. We have developed a LC-MS(n) method for the separation and detection of fructan isomers and present here evidence for specific MS(n) fragmentation patterns associated with β 1-2 (inulins) and β 2-6 (levans) fructans. LC-MS(n) analysis of (13)C labeled fructan oligomers produced by L. perenne fructosyltransferases expressed in yeast has enabled us to account for the observed fragmentation patterns in terms of preferential cleavage of the glycosidic bond between O- and fructose C2 in both inulins and levans and to differentiate reducing-end from nonreducing end cross ring cleavages in levans. We propose that higher order MS fragmentation patterns can be used to distinguish between the two major classes of fructan, i.e., inulins and levans, without the need for authentic standards.


Analytical Biochemistry | 2009

A reverse-phase liquid chromatography/mass spectrometry method for the analysis of high-molecular-weight fructooligosaccharides

Scott James Harrison; Karl Fraser; Geoffrey A. Lane; Silas G. Villas-Bôas; Susanne Rasmussen

Many important crop and forage plants accumulate polymeric water-soluble carbohydrates as fructooligosaccharides (or fructans). We have developed an improved method for the analysis of the full fructan complement in plant extracts based on porous graphitized carbon chromatography coupled to negative electrospray ionization mass spectrometry. By the use of profile data collection and multiple charge state ions, the effective mass range of the ion trap was extended to allow for the analysis of very high-molecular-weight oligosaccharides. This method allows the separation and quantification of isomeric fructan oligomers ranging from degree of polymerization (DP) 3 to DP 49.

Collaboration


Dive into the Scott James Harrison's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders Holmgaard Hansen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Jerome Maury

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irina Borodina

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge