Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott K. Durum is active.

Publication


Featured researches published by Scott K. Durum.


Immunology Today | 1986

There is more than one interleukin 1

Joost J. Oppenheim; Elizabeth J. Kovacs; Kouji Matsushima; Scott K. Durum

In 1972, Gery and co-workers(1) detected a factor that promotes murine thymocyte proliferation in culture supernatants of human peripheral blood adherent leukocytes. This factor is active across species lines, does not support the growth of interleukin 2 (IL-2)-dependent lymphocyte lines, is produced by monocytic rather than lymphocytic leukocytes, and has subsequently been termed interleukin 1 (IL- 1)(2). More recently, it has become evident that IL-1 activities can be produced by virtually every nucleated cell type and, in addition, IL-1 has been reported to have stimulatory effects on the growth and differentiation of numerous cell types. In this review, Joost Oppenheim and his colleagues discuss the biochemical characteristics, gene cloning, cell sources, biological properties and actions of IL-1, and give reasons why this pleitotropic, nonspecific hormone-like cytokine is of considerable concern to immunologists.


Nature Reviews Immunology | 2007

Interleukin-7 receptor expression: intelligent design

Renata Mazzucchelli; Scott K. Durum

Interleukin-7 (IL-7) is produced by stromal cells in lymphoid tissues and is required for the development of T cells and for their persistence in the periphery. Unlike many other cytokines that act on lymphocytes, IL-7 production by stromal cells is not substantially affected by extrinsic stimuli. So, the amount of available IL-7 protein is thought to be regulated by the rate that it is scavenged by T cells. As we review here, there is mounting evidence indicating that the amount of IL-7 receptor expressed on a cell not only determines how vigorously the cell responds to IL-7, but it can also determine how efficiently the cell consumes IL-7 and, therefore, affect the supply of this limiting resource in the niche.


Prostaglandins | 1989

Interleukin-1 stimulates prostaglandin biosynthesis by human amnion

Roberto Romero; Scott K. Durum; Charles A. Dinarello; Enrique Oyarzun; John C. Hobbins; Murray D. Mitchell

The purpose of these studies was to determine if Interleukin-1 (IL-1) alters the rate of prostaglandin biosynthesis by human amnion. Primary monolayer cultures of amnion cells were established from women undergoing elective cesarean section before the onset of labor. Natural purified and recombinant human IL-1 alpha and IL-1 beta were incubated with amnion cells in culture, and prostaglandin E2 (PGE2) biosynthesis was measured by radioimmunoassay in cell-free media. A concentration-dependent increase in PGE2 production by amnion cells occurred in response to natural purified and recombinant IL-1 preparations. No differences in the parameters of the dose-response curves between the two IL-1 gene products could be determined (p greater than 0.05). Indomethacin blocked the effect of IL-1 in prostaglandin biosynthesis by human amnion. Interleukin-1, a fever mediator, could serve as a signal for the initiation of labor in cases of intrauterine or systemic infection.


Nature Immunology | 2015

Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets

Michelle L. Robinette; Anja Fuchs; Victor S. Cortez; Jacob S Lee; Yaming Wang; Scott K. Durum; Susan Gilfillan; Marco Colonna

The recognized diversity of innate lymphoid cells (ILCs) is rapidly expanding. Three ILC classes have emerged, ILC1, ILC2 and ILC3, with ILC1 and ILC3 including several subsets. The classification of some subsets is unclear, and it remains controversial whether natural killer (NK) cells and ILC1 cells are distinct cell types. To address these issues, we analyzed gene expression in ILCs and NK cells from mouse small intestine, spleen and liver, as part of the Immunological Genome Project. The results showed unique gene-expression patterns for some ILCs and overlapping patterns for ILC1 cells and NK cells, whereas other ILC subsets remained indistinguishable. We identified a transcriptional program shared by small intestine ILCs and a core ILC signature. We revealed and discuss transcripts that suggest previously unknown functions and developmental paths for ILCs.


Immunity | 2011

Th17 Cells Are Long Lived and Retain a Stem Cell-like Molecular Signature

Pawel Muranski; Zachary A. Borman; Sid P. Kerkar; Christopher A. Klebanoff; Yun Ji; Luis Sanchez-Perez; Madhusudhanan Sukumar; Robert N. Reger; Zhiya Yu; Steven J. Kern; Rahul Roychoudhuri; Gabriela A. Ferreyra; Wei Shen; Scott K. Durum; Lionel Feigenbaum; Douglas C. Palmer; Paul A. Antony; Chi-Chao Chan; Arian Laurence; Robert L. Danner; Luca Gattinoni; Nicholas P. Restifo

Th17 cells have been described as short lived, but this view is at odds with their capacity to trigger protracted damage to normal and transformed tissues. We report that Th17 cells, despite displaying low expression of CD27 and other phenotypic markers of terminal differentiation, efficiently eradicated tumors and caused autoimmunity, were long lived, and maintained a core molecular signature resembling early memory CD8(+) cells with stem cell-like properties. In addition, we found that Th17 cells had high expression of Tcf7, a direct target of the Wnt and β-catenin signaling axis, and accumulated β-catenin, a feature observed in stem cells. In vivo, Th17 cells gave rise to Th1-like effector cell progeny and also self-renewed and persisted as IL-17A-secreting cells. Multipotency was required for Th17 cell-mediated tumor eradication because effector cells deficient in IFN-γ or IL-17A had impaired activity. Thus, Th17 cells are not always short lived and are a less-differentiated subset capable of superior persistence and functionality.


Cytokine & Growth Factor Reviews | 1999

Interleukin-7: physiological roles and mechanisms of action.

Robert R. Hofmeister; Annette R. Khaled; N. Benbernou; E. Rajnavolgyi; Kathrin Muegge; Scott K. Durum

Interleukin-7 (IL-7), a product of stromal cells, provides critical signals to lymphoid cells at early stages in their development. Two types of cellular responses to IL-7 have been identified in lymphoid progenitors: (1) a trophic effect and (2) an effect supporting V(D)J recombination. The IL-7 receptor is comprised of two chains, IL-7R alpha and gamma(c). Following receptor crosslinking, rapid activation of several classes of kinases occurs, including members of the Janus and Src families and PI3-kinase. A number of transcription factors are subsequently activated including STATs, c-myc, NFAT and AP-1. However, it remains to be determined which, if any, previously identified pathway leads to the trophic or V(D)J endpoints. The trophic response to IL-7 involves protecting lymphoid progenitors from a death process that resembles apoptosis. This protection is partly mediated by IL-7 induction of Bcl-2, however other IL-7-induced events are probably also involved in the trophic response. The V(D)J response to IL-7 is partly mediated through increased production of Rag proteins (which cleave the target locus) and partly by increasing the accessibility of a target locus to cleavage through chromatin remodeling.


Nature Genetics | 2011

Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia.

Priscila Pini Zenatti; Daniel Ribeiro; Wenqing Li; Linda Zuurbier; Milene Costa da Silva; Maddalena Paganin; Julia Tritapoe; Julie A. Hixon; André Bortolini Silveira; Bruno A. Cardoso; Leonor M. Sarmento; Nádia C. Correia; María L. Toribio; Joerg Kobarg; Martin A. Horstmann; Rob Pieters; Silvia Regina Brandalise; Adolfo A. Ferrando; Jules P.P. Meijerink; Scott K. Durum; J. Andrés Yunes; João T. Barata

Interleukin 7 (IL-7) and its receptor, formed by IL-7Rα (encoded by IL7R) and γc, are essential for normal T-cell development and homeostasis. Here we show that IL7R is an oncogene mutated in T-cell acute lymphoblastic leukemia (T-ALL). We find that 9% of individuals with T-ALL have somatic gain-of-function IL7R exon 6 mutations. In most cases, these IL7R mutations introduce an unpaired cysteine in the extracellular juxtamembrane-transmembrane region and promote de novo formation of intermolecular disulfide bonds between mutant IL-7Rα subunits, thereby driving constitutive signaling via JAK1 and independently of IL-7, γc or JAK3. IL7R mutations induce a gene expression profile partially resembling that provoked by IL-7 and are enriched in the T-ALL subgroup comprising TLX3 rearranged and HOXA deregulated cases. Notably, IL7R mutations promote cell transformation and tumor formation. Overall, our findings indicate that IL7R mutational activation is involved in human T-cell leukemogenesis, paving the way for therapeutic targeting of IL-7R–mediated signaling in T-ALL.


Nature Reviews Immunology | 2002

Lymphocide: cytokines and the control of lymphoid homeostasis

Annette R. Khaled; Scott K. Durum

In a human, about 1011 excess peripheral lymphocytes die every day. This death process maintains a constant lymphocyte population size in the face of a continuous influx of new lymphocytes and the homeostatic proliferation of old ones. Death is triggered when a lymphocyte fails to acquire signals from survival factors, the availability of which, therefore, determines the size of the pool of lymphocytes. A lymphocyte acquires survival signals through receptors for cytokines, antigens, hormones and probably other extracellular factors. Here, we discuss current concepts of the intracellular signalling pathways for survival versus death that establish cytokine-regulated lymphocyte homeostasis.


Molecular and Cellular Biology | 2001

Trophic Factor Withdrawal: p38 Mitogen-Activated Protein Kinase Activates NHE1, Which Induces Intracellular Alkalinization

Annette R. Khaled; Andrea N. Moor; Aiqun Li; Kyungjae Kim; Douglas K. Ferris; Kathrin Muegge; Robert J. Fisher; Larry Fliegel; Scott K. Durum

ABSTRACT Trophic factor withdrawal induces cell death by mechanisms that are incompletely understood. Previously we reported that withdrawal of interleukin-7 (IL-7) or IL-3 produced a rapid intracellular alkalinization, disrupting mitochondrial metabolism and activating the death protein Bax. We now observe that this novel alkalinization pathway is mediated by the pH regulator NHE1, as shown by the requirement for sodium, blocking by pharmacological inhibitors or use of an NHE1-deficient cell line, and the altered phosphorylation of NHE1. Alkalinization also required the stress-activated p38 mitogen-activated protein kinase (MAPK). Inhibition of p38 MAPK activity with pharmacological inhibitors or expression of a dominant negative kinase prevented alkalinization. Activated p38 MAPK directly phosphorylated the C terminus of NHE1 within a 40-amino-acid region. Analysis by mass spectroscopy identified four phosphorylation sites on NHE1, Thr 717, Ser 722, Ser 725, and Ser 728. Thus, loss of trophic cytokine signaling induced the p38 MAPK pathway, which phosphorylated NHE1 at specific sites, inducing intracellular alkalinization.


Molecular and Cellular Biology | 2004

Distinct Regions of the Interleukin-7 Receptor Regulate Different Bcl2 Family Members

Qiong Jiang; Wenqing Li; Robert R. Hofmeister; Howard A. Young; David R. Hodge; Jonathan R. Keller; Annette R. Khaled; Scott K. Durum

ABSTRACT The antiapoptotic function of the interleukin-7 (IL-7) receptor is related to regulation of three members of the Bcl2 family: synthesis of Bcl2, phosphorylation of Bad, and cytosolic retention of Bax. Here we show that, in an IL-7-dependent murine T-cell line, different regions of the IL-7 receptor initiate the signal transduction pathways that regulate these proteins. Both Box1 and Y449 are required to signal Bcl2 synthesis and Bax cytosolic retention. This suggests a sequential model in which Jak1, which binds to Box1, is first activated and then phosphorylates Y449, leading to Bcl2 and Bax regulation, accounting for approximately 90% of the survival function. Phosphorylation of Bad required Box1 but not Y449, suggesting that Jak1 also initiates an additional signaling cascade that accounts for approximately 10% of the survival function. Stat5 was activated from the Y449 site but only partially accounted for the survival signal. Proliferation required both Y449 and Box1. Thymocyte development in vivo showed that deletion of Y449 eliminated 90% of αβ T-cell development and completely eliminated γδ T-cell development, whereas deleting Box 1 completely eliminated both αβ and γδ T-cell development. Thus the IL-7 receptor controls at least two distinct pathways, in addition to Stat5, that are required for cell survival.

Collaboration


Dive into the Scott K. Durum's collaboration.

Top Co-Authors

Avatar

Wenqing Li

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Julie A. Hixon

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Kathrin Muegge

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Annette R. Khaled

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Wei Shen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Howard A. Young

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miriam R. Anver

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Kyungjae Kim

Science Applications International Corporation

View shared research outputs
Researchain Logo
Decentralizing Knowledge