Scott Leisner
University of Toledo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Scott Leisner.
Journal of Plant Physiology | 2011
Sushant Khandekar; Scott Leisner
Since soluble silicon (Si) has been shown to alleviate copper (Cu) toxicity in Arabidopsis thaliana, the expression of genes involved in responses to Cu toxicity was examined by quantitative reverse transcription-polymerase chain reaction. Expression levels of three metallothionein (MT) genes were increased under Cu stress conditions whereas Cu-stressed plants treated with Si either maintained high levels or contained even higher levels of MT RNA. Cu/zinc superoxide dismutase (SOD) enzyme activity was induced by Cu toxicity. However, SOD activity was increased even more if plants were provided with extra Si and toxic levels of Cu. Previously, plants treated with elevated Cu showed increased phenylalanine ammonia lyase (PAL) activity that was reduced when the plants were also provided with extra Si. Since the Arabidopsis genome encodes 4 PAL genes (PAL1-4), we examined which ones were responsive to Cu and Si. PAL 1, PAL 2, and PAL 3 all showed similar patterns of gene expression that matched previous enzymatic data while PAL4 was elevated by the presence of high Cu whether Si was present or not. Taken together, these data suggested that Si permitted plants to respond to Cu toxicity more effectively and that these changes occurred at the gene expression level.
Virus Research | 2008
Michael Hapiak; Yongzhong Li; Keli Agama; Shaddy Swade; Genevieve Okenka; Jessica Falk; Sushant Khandekar; Gaurav Raikhy; Alisha Anderson; Justin Pollock; Wendy Zellner; James E. Schoelz; Scott Leisner
Cauliflower mosaic virus (CaMV) gene VI encodes a multifunctional protein (P6) involved in the translation of viral RNA, the formation of inclusion bodies, and the determination of host range. Arabidopsis thaliana ecotype Tsu-0 prevents the systemic spread of most CaMV isolates, including CM1841. However, CaMV isolate W260 overcomes this resistance. In this paper, the N-terminal 110 amino acids of P6 (termed D1) were identified as the resistance-breaking region. D1 also bound full-length P6. Furthermore, binding of W260 D1 to P6 induced higher beta-galactosidase activity and better leucine-independent growth in the yeast two-hybrid system than its CM1841 counterpart. Thus, W260 may evade Tsu-0 resistance by mediating P6 self-association in a manner different from that of CM1841. Because Tsu-0 resistance prevents virus movement, interaction of P6 with P1 (CaMV movement protein) was investigated. Both yeast two-hybrid analyses and maltose-binding protein pull-down experiments show that P6 interacts with P1. Although neither half of P1 interacts with P6, the N-terminus of P6 binds P1. Interestingly, D1 by itself does not interact with P1, indicating that different portions of the P6 N-terminus are involved in different activities. The P1-P6 interactions suggest a role for P6 in virus transport, possibly by regulating P1 tubule formation or the assembly of movement complexes.
Trends in Microbiology | 1993
Scott Leisner; Stephen H. Howell
During systemic infections, plant viruses move long distances through the plant vasculature. Leaf age, the rate of plant development, plant anatomy and the direction of nutrient flow in the vasculature influence the pattern and extent of systemic spread of the virus, and, in turn, these factors are major determinants of virus resistance.
Virology | 2013
Carlos A. Angel; Lindy Lutz; Xiaohua Yang; Andres Rodriguez; Adam Adair; Yu Zhang; Scott Leisner; Richard S. Nelson; James E. Schoelz
The gene VI product, protein 6 (P6), of Cauliflower mosaic virus (CaMV) assembles into large, amorphous inclusion bodies (IBs) that are considered sites for viral protein synthesis and viral genome replication and encapsidation. P6 IBs align with microfilaments and require them for intracellular trafficking, a result implying that P6 IBs function to move virus complexes or virions within the cell to support virus physiology. Through a yeast two-hybrid screen we determined that CHUP1, a plant protein allowing chloroplast transport through an interaction with chloroplast and microfilament, interacts with P6. The interaction between CHUP1 and P6 was confirmed through colocalization in vivo and co-immunoprecipitation assays. A truncated CHUP1 fused with enhanced cyan fluorescent protein, unable to transport chloroplasts, inhibited intracellular movement of P6-Venus inclusions. Silencing of CHUP1 in N. edwardsonii impaired the ability of CaMV to infect plants. The findings suggest that CHUP1 supports CaMV infection through an interaction with P6.
Plant Physiology | 2014
Andres Rodriguez; Carlos A. Angel; Lindy Lutz; Scott Leisner; Richard S. Nelson; James E. Schoelz
Inclusion bodies of Cauliflower mosaic virus function in delivery of virions to the plasmodesma for transport to adjacent cells. The P6 protein of Cauliflower mosaic virus (CaMV) is responsible for the formation of inclusion bodies (IBs), which are the sites for viral gene expression, replication, and virion assembly. Moreover, recent evidence indicates that ectopically expressed P6 inclusion-like bodies (I-LBs) move in association with actin microfilaments. Because CaMV virions accumulate preferentially in P6 IBs, we hypothesized that P6 IBs have a role in delivering CaMV virions to the plasmodesmata. We have determined that the P6 protein interacts with a C2 calcium-dependent membrane-targeting protein (designated Arabidopsis [Arabidopsis thaliana] Soybean Response to Cold [AtSRC2.2]) in a yeast (Saccharomyces cerevisiae) two-hybrid screen and have confirmed this interaction through coimmunoprecipitation and colocalization assays in the CaMV host Nicotiana benthamiana. An AtSRC2.2 protein fused to red fluorescent protein (RFP) was localized to the plasma membrane and specifically associated with plasmodesmata. The AtSRC2.2-RFP fusion also colocalized with two proteins previously shown to associate with plasmodesmata: the host protein Plasmodesmata-Localized Protein1 (PDLP1) and the CaMV movement protein (MP). Because P6 I-LBs colocalized with AtSRC2.2 and the P6 protein had previously been shown to interact with CaMV MP, we investigated whether P6 I-LBs might also be associated with plasmodesmata. We examined the colocalization of P6-RFP I-LBs with PDLP1-green fluorescent protein (GFP) and aniline blue (a stain for callose normally observed at plasmodesmata) and found that P6-RFP I-LBs were associated with each of these markers. Furthermore, P6-RFP coimmunoprecipitated with PDLP1-GFP. Our evidence that a portion of P6-GFP I-LBs associate with AtSRC2.2 and PDLP1 at plasmodesmata supports a model in which P6 IBs function to transfer CaMV virions directly to MP at the plasmodesmata.
Virus Research | 2012
Lindy Lutz; Gaurav Raikhy; Scott Leisner
The Cauliflower mosaic virus (CaMV) gene VI product (P6) is a multifunctional protein essential for viral infection. In order to perform its various tasks, P6 interacts with both viral and host factors, as well as forming electron-dense cytoplasmic inclusion bodies. Here we investigate the interactions of P6 with three CaMV proteins: P2 (aphid transmission factor), P3 (virion-associated protein), and P7 (protein of unknown function). Based on yeast two-hybrid and maltose-binding protein pull-down experiments, P6 interacted with all three of these CaMV proteins. P2 helps to stabilize P6 inclusion bodies. Although the P2s from two CaMV isolates (W260 and CM1841) differ in the ability to stabilize inclusion bodies, both interacted similarly with P6. This suggests that inclusion body stability may not be dependent on the efficiency of P2-P6 interaction. However, neither P2 nor P3 interacted with P7 in yeast two-hybrid assays.
Journal of Plant Physiology | 2011
Wendy Zellner; Jonathan M. Frantz; Scott Leisner
Soluble silicon (Si) provides protection to plants against a variety of abiotic and biotic stress. However, the effects of Si on viral infections are largely unknown. To investigate the role of Si in viral infections, hydroponic studies were conducted in Nicotiana tabacum with two pathogens: Tobacco ringspot virus (TRSV) and Tobacco mosaic virus (TMV). Plants grown in elevated Si showed a delay in TRSV systemic symptom formation and a reduction in symptomatic leaf area, compared to the non-supplemented controls. TRSV-infected plants showed significantly higher levels of foliar Si compared to mock-inoculated plants. However, the Si effect appeared to be virus-specific, since the element did not alter TMV symptoms nor did infection by this virus alter foliar Si levels. Hence, increased foliar Si levels appear to correlate with Si-modulated protection against viral infection. This is all the more intriguing since N. tabacum is classified as a low Si accumulator.
Virus Research | 2011
Gaurav Raikhy; Charles R. Krause; Scott Leisner
The genome of the floriculture pathogen Dahlia mosaic caulimovirus (DMV) encodes six open reading frames. Generally, caulimovirus gene VI products (P6s) are thought to be multifunctional proteins required for viral infection and it is likely that self-association is required for some of these functions. In this study, yeast two-hybrid and maltose binding protein (MBP) pull-down assays indicated that full-length DMV P6 specifically self-associates. Further analyses indicated that only the DMV P6 N-terminal region, consisting of 115 amino acids, interacts with full-length P6 and with itself. This distinguishes the DMV P6 from its Cauliflower mosaic virus counterpart, which contains four regions involved in self-association. Thus, our results suggest that each caulimovirus P6 may possess a unique pattern of protein-protein interactions. Bioinformatic tools identified a putative nuclear exclusion signal located between amino acid residues 10-20, suggesting another possible function for the P6 N-terminal region.
Virology | 2015
Lindy Lutz; Genevieve Okenka; James E. Schoelz; Scott Leisner
Cauliflower mosaic virus gene VI product (P6) is an essential protein that forms cytoplasmic, inclusion bodies (IBs). P6 contains four regions involved in self-association, termed D1-D4. D3 binds to D1, along with D4 and contains a spacer region (termed D3b) between two RNA-binding domains. Here we show D3b binds full-length P6 along with D1 and D4. Full-length P6s harboring single amino acid substitutions within D3b showed reduced binding to both D1 and D4. Full-length P6s containing D3b mutations and fused with green fluorescent protein formed inclusion-like bodies (IL-Bs) when expressed in Nicotiana benthamiana leaves. However, mutant P6s with reduced binding to D1 and D4, showed smaller IL-Bs, than wild type. Likewise, viruses containing these mutations showed a decrease in inoculated leaf viral DNA levels and reduced efficiency of systemic infection. These data suggest that mutations influencing P6 self-association alter IB formation and reduce virus infection.
Gene | 2014
Evgeny E. Akkuratov; Lorraine Walters; Arnab Saha-Mandal; Sushant Khandekar; Erin L. Crawford; Craig L. Zirbel; Scott Leisner; Ashwin Prakash; Larisa Fedorova; Alexei Fedorov
Orthologous introns have identical positions relative to the coding sequence in orthologous genes of different species. By analyzing the complete genomes of five plants we generated a database of 40,512 orthologous intron groups of dicotyledonous plants, 28,519 orthologous intron groups of angiosperms, and 15,726 of land plants (moss and angiosperms). Multiple sequence alignments of each orthologous intron group were obtained using the Mafft algorithm. The number of conserved regions in plant introns appeared to be hundreds of times fewer than that in mammals or vertebrates. Approximately three quarters of conserved intronic regions among angiosperms and dicots, in particular, correspond to alternatively-spliced exonic sequences. We registered only a handful of conserved intronic ncRNAs of flowering plants. However, the most evolutionarily conserved intronic region, which is ubiquitous for all plants examined in this study, including moss, possessed multiple structural features of tRNAs, which caused us to classify it as a putative tRNA-like ncRNA. Intronic sequences encoding tRNA-like structures are not unique to plants. Bioinformatics examination of the presence of tRNA inside introns revealed an unusually long-term association of four glycine tRNAs inside the Vac14 gene of fish, amniotes, and mammals.