Scott M. Rosendahl
Canadian Light Source
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Scott M. Rosendahl.
Langmuir | 2009
Scott M. Rosendahl; Brook R. Danger; J. P. Vivek; Ian J. Burgess
Attenuated total reflectance surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) measurements have been employed to study the adsorption of dimethylaminopyridine (DMAP) and its conjugate acid (DMAPH+) on gold surfaces as a function of applied potential and solution pH. Based on our transmission measurements, we have been able to demonstrate that the acid/base forms of this pyridine derivative can be readily differentiated due to their distinct IR signals. When the solution pH is equal to the pKa of DMAPH+, we demonstrate that the adsorbing species is DMAP, oriented with its heterocyclic ring perpendicular to the electrode surface. In acidic electrolytes, our SEIRAS data provide direct spectroscopic evidence of DMAP monolayer formation even though the pH is 5 units below the pKa of the conjugate acid. Our data support a potential induced deprotonation of the endocyclic nitrogen and resulting coordination of the nitrogen lone pair to the gold surface. Both of these results confirm our existing model of DMAP adsorption previously based solely on electrochemical measurements. However, the present SEIRAS study also indicates that, at low pH, DMAPH+ can electrostatically coordinate to very negatively charged surfaces. This mode of adsorption was previously unobserved, illustrating the ability of in situ spectroscopic techniques to reveal new information that is not apparent from traditional electrochemical techniques such as differential capacity and chronocoulometry.
Bioresource Technology | 2018
Jian Shen; Gordon Huang; Chunjiang An; Xiaying Xin; charley huang; Scott M. Rosendahl
This study explored the adsorption of Tetrabromobisphenol A (TBBPA) on pinecone-derived activated charcoal. The interactions between TBBPA and activated-charcoal surface, as well as the corresponding effects of functionality and adsorption capacities, were investigated through synchrotron FTIR, kinetics and surface functionality analyses. It was found that multiple acid functional groups and their interactive effects played important roles. The adsorption on activated charcoal from Yellow pinecone was favored by the surface with high polarity, low aromaticity, and low surface area. In comparison, adsorption on activated charcoal from Scot pinecone was favored by the surface with high aromaticity and high surface area. The adsorption capacity and removal efficiency were significantly dependent upon the contents of acid functional groups on charcoal surface. This study showed that the newly presented evidence of interactions between oxygen-containing functional groups and TBBPA will be helpful for exploring the treatment and transport of such a contaminant in the environment.
Analytical Chemistry | 2013
Scott M. Rosendahl; Ferenc Borondics; Tim May; Ian J. Burgess
The result of interfacing step-scan spectroelectrochemistry with an IR microscope and synchrotron infrared (SIR) radiation is provided here. An external reflectance cell containing a 25 μm gold ultramicroelectrode is employed to achieve an electrochemical time constant less than one microsecond. The use of a prototypical electrochemical system, i.e., the mass-transport controlled reduction of ferricyanide, allows for a proof of principle evaluation of the viability of SIR for step-scan spectroelectrochemistry. An analysis of the importance of accounting for synchrotron source variation over the prolonged duration of a step-scan experiment is provided. Modeling of the material flux in the restricted diffusion space afforded by the external reflectance cell allows the quantitative IR results to be compared to theoretical predictions. The results indicate that only at very short times does linear diffusion within the cavity dominate the electrode response and the majority of the transient signal operates under conditions of quasi-hemispherical diffusion. The analytical information provided by the IR signal is found to be considerably less than that derived from the current response due the latters pronounced edge effects. The results provide a detection limit of 36 fmol for step-scan SIR measurements of ferrocyanide. Implications for future IR spectroelectrochemical studies in the microsecond domain are discussed.
Analytical Chemistry | 2011
Scott M. Rosendahl; Ferenc Borondics; Tim May; Tor Pedersen; Ian J. Burgess
Synchrotron infrared radiation has been successfully coupled through an infrared (IR) microscope to a thin-cavity external reflectance cell to study the diffusion controlled redox of a ferrocyanide solution. Excellent signal-to-noise ratios were achieved even at aperture settings close to the diffraction limit. Comparisons of noise levels as a function of aperture size demonstrate that this can be attributed to the high brilliance of synchrotron radiation relative to a conventional thermal source. Time resolved spectroscopic studies of diffusion controlled redox behavior have been measured and compared to purely electrochemical responses of the thin-cavity cell. Marked differences between the two measurements have been explained by analyzing diffusion in both the axial (linear) and radial dimensions. Whereas both terms contribute to the measured current and charge, only species that originate in the volume element above the electrode and diffuse in the direction perpendicular to the electrode surface are interrogated by IR radiation. Implications for the use of ultramicroelectrodes and synchrotron IR (SIR) to study electrochemical processes in the submillisecond time domain are discussed.
Environmental Science & Technology | 2018
Xiaying Xin; Guohe Huang; Chunjiang An; charley huang; Harold G. Weger; Shan Zhao; Yang Zhou; Scott M. Rosendahl
This study investigated the toxicity of triclosan to the green microalga Chlorococcum sp. under multiple environmental stressors. The interactions between triclosan and environmental stressors were explored through full two-way factorial, synchrotron-based Fourier transform infrared spectromicroscopy and principal component analyses. Phosphorus concentration, pH * phosphorus concentration, and temperature * pH * NaCl concentration were the most statistically significant factors under triclosan exposure. The variation of those factors would have a huge impact on biophysiological performances. It is interesting to find Chlorococcum sp. may become more resistant against triclosan in phosphorus-enriched environment. Besides, particular significant factors from multiple environmental stressors showed the impacts of triclosan on the corresponding response of Chlorococcum sp. owing to the specific structure and performance of biomolecular components. Moreover, two high-order interactions of temperature * pH * NaCl concentration and temperature * pH * NaCl concentration * phosphorus concentration had more contributions than others at the subcellular level, which could be attributed to the interactive complexity of biomolecular components. Due to cellular self-regulation mechanism and short exposure time, the biophysiological changes of Chlorococcum sp. were undramatic. These findings can help reveal the interactive complexity among triclosan and multiple environmental stressors. It is suggested that multiple environmental stressors should be considered during ecological risk assessment and management of emerging pollutants.
Review of Scientific Instruments | 2011
Scott M. Rosendahl; Ferenc Borondics; Tim May; Tor Pedersen; Ian J. Burgess
A description of a coupled electrochemical and spectrometer interface using synchrotron infrared radiation is provided. The interface described allows for the precise and accurate timing needed for time-resolved IR spectroscopic studies of electrochemical systems. The overall interface uses a series of transistor-transistor logic trigger signals generated from the commercial FTIR spectrometer to regulate the recording of control, electrochemical, and IR signals with reproducible and adjustable timing. The instrument has been tested using a thin-layer electrochemical cell with synchrotron light focused through microscope optics. The time-resolved response of the benzoquinone/dihydroxybenzoquinone redox couple is illustrated as an example of the instruments capability.
PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON SYNCHROTRON RADIATION INSTRUMENTATION – SRI2015 | 2016
Takuji Ohigashi; Masanari Nagasaka; Toshio Horigome; Nobuhiro Kosugi; Scott M. Rosendahl; Adam P. Hitchcock
An azimuthal rotatable sample cell, an electrochemical cell and a controlled humidity cell for in-situ scanning transmission X-ray microscopy (STXM) were developed at UVSOR-III Synchrotron (Okazaki, Japan). By using these sample cells, the polarization dependence of sodium titanate nanoribbons, in-situ electrochemistry of 0.1M FeSO4 solution, and in-situ morphological change of a functional polymer with changing humidity were successfully measured.
Review of Scientific Instruments | 2018
Vinod Prabu; Martin Obst; Hooman Hosseinkhannazer; Matthew Reynolds; Scott M. Rosendahl; Jian Wang; Adam P. Hitchcock
We report the design and performance of a 3-electrode device for real time in situ scanning transmission X-ray microscopy studies of electrochemical processes under both static (sealed, non-flow) conditions and with a continuous flow of electrolytes. The device was made using a combination of silicon microfabrication and 3D printing technologies. The performance is illustrated by results of a study of copper deposition and stripping at a gold working electrode. X-ray absorption spectromicroscopy at the Cu 2p edge was used to follow the evolution as a function of potential and time of the spatial distributions of Cu(0) and Cu(i) species electro-deposited from an aqueous solution of copper sulphate. The results are interpreted in terms of competing mechanisms for the reduction of Cu(ii).
Applied Spectroscopy | 2018
Tyler A. Morhart; Stuart Read; Garth Wells; Michael Jacobs; Scott M. Rosendahl; Sven Achenbach; Ian J. Burgess
A custom-designed optical configuration compatible with the use of micromachined multigroove internal reflection elements (μ-groove IREs) for attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy and imaging applications in microfluidic devices is described. The μ-groove IREs consist of several face-angled grooves etched into a single, monolithic silicon chip. The optical configuration permits individual grooves to be addressed by focusing synchrotron sourced IR light through a 150 µm pinhole aperture, restricting the beam spot size to a dimension smaller than that of the groove walls. The effective beam spot diameter at the ATR sampling plane is determined through deconvolution of the measured detector response and found to be 70 µm. The μ-groove IREs are highly compatible with standard photolithographic techniques as demonstrated by printing a 400 µm wide channel in an SU-8 film spin-coated on the IRE surface. Attenuated total reflection FT-IR mapping as a function of sample position across the channel illustrates the potential application of this approach for rapid prototyping of microfluidic devices.
Electrochimica Acta | 2008
Scott M. Rosendahl; Ian J. Burgess