Scott P. Keely
United States Environmental Protection Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Scott P. Keely.
PLOS ONE | 2013
Sarah E. Staggs; Erin M. Beckman; Scott P. Keely; Reena Mackwan; Michael W. Ware; Alan P. Moyer; James A. Ferretti; Abu Sayed; Lihua Xiao; Eric N. Villegas
Quantitative real-time polymerase chain reaction (qPCR) assays to detect Cryptosporidium oocysts in clinical samples are increasingly being used to diagnose human cryptosporidiosis, but a parallel approach for detecting and identifying Cryptosporidium oocyst contamination in surface water sources has yet to be established for current drinking water quality monitoring practices. It has been proposed that Cryptosporidium qPCR-based assays could be used as viable alternatives to current microscopic-based detection methods to quantify levels of oocysts in drinking water sources; however, data on specificity, analytical sensitivity, and the ability to accurately quantify low levels of oocysts are limited. The purpose of this study was to provide a comprehensive evaluation of TaqMan-based qPCR assays, which were developed for either clinical or environmental investigations, for detecting Cryptosporidium oocyst contamination in water. Ten different qPCR assays, six previously published and four developed in this study were analyzed for specificity and analytical sensitivity. Specificity varied between all ten assays, and in one particular assay, which targeted the Cryptosporidium 18S rRNA gene, successfully detected all Cryptosporidium spp. tested, but also cross-amplified T. gondii, fungi, algae, and dinoflagellates. When evaluating the analytical sensitivity of these qPCR assays, results showed that eight of the assays could reliably detect ten flow-sorted oocysts in reagent water or environmental matrix. This study revealed that while a qPCR-based detection assay can be useful for detecting and differentiating different Cryptosporidium species in environmental samples, it cannot accurately measure low levels of oocysts that are typically found in drinking water sources.
Journal of Applied Microbiology | 2015
Scott P. Keely; N.E. Brinkman; B.D. Zimmerman; D. Wendell; K.M. Ekeren; S.K. De Long; S. Sharvelle; J.L. Garland
Development of efficacious grey water (GW) treatment systems would benefit from detailed knowledge of the bacterial composition of GW. Thus, the aim of this study was to characterize the bacterial composition from (i) various points throughout a GW recycling system that collects shower and sink handwash (SH) water into an equalization tank (ET) prior to treatment and (ii) laundry (LA) water effluent of a commercial‐scale washer.
Journal of Applied Microbiology | 2013
Michael W. Ware; Scott P. Keely; Eric N. Villegas
This study developed and systematically evaluated performance and limit of detection of an off‐the‐slide genotyping procedure for both Cryptosporidium oocysts and Giardia cysts.
Scientific Reports | 2017
Drake Phelps; Nichole E. Brinkman; Scott P. Keely; Emily M. Anneken; Tara R. Catron; Doris Betancourt; Charles E. Wood; Scott T. Espenschied; John F. Rawls; Tamara Tal
Changes in resident microbiota may have wide-ranging effects on human health. We investigated whether early life microbial disruption alters neurodevelopment and behavior in larval zebrafish. Conventionally colonized, axenic, and axenic larvae colonized at 1 day post fertilization (dpf) were evaluated using a standard locomotor assay. At 10 dpf, axenic zebrafish exhibited hyperactivity compared to conventionalized and conventionally colonized controls. Impairment of host colonization using antibiotics also caused hyperactivity in conventionally colonized larvae. To determine whether there is a developmental requirement for microbial colonization, axenic embryos were serially colonized on 1, 3, 6, or 9 dpf and evaluated on 10 dpf. Normal activity levels were observed in axenic larvae colonized on 1–6 dpf, but not on 9 dpf. Colonization of axenic embryos at 1 dpf with individual bacterial species Aeromonas veronii or Vibrio cholerae was sufficient to block locomotor hyperactivity at 10 dpf. Exposure to heat-killed bacteria or microbe-associated molecular patterns pam3CSK4 or Poly(I:C) was not sufficient to block hyperactivity in axenic larvae. These data show that microbial colonization during early life is required for normal neurobehavioral development and support the concept that antibiotics and other environmental chemicals may exert neurobehavioral effects via disruption of host-associated microbial communities.
PLOS ONE | 2018
Nichole E. Brinkman; Eric N. Villegas; Jay Garland; Scott P. Keely
Metagenomics is a powerful tool for characterizing viral composition within environmental samples, but sample and molecular processing steps can bias the estimation of viral community structure. The objective of this study is to understand the inherent variability introduced when conducting viral metagenomic analyses of wastewater and provide a bioinformatic strategy to accurately analyze sequences for viral community analyses. A standard approach using a combination of ultrafiltration, membrane filtration, and DNase treatment, and multiple displacement amplification (MDA) produced DNA preparations without any bacterial derived genes. Results showed recoveries in wastewater matrix ranged between 60–100%. A bias towards small single stranded DNA (ssDNA; polyomavirus) virus types vs larger double stranded DNA (dsDNA; adenovirus) viruses was also observed with a total estimated recovery of small circular viruses to be as much as 173-fold higher. Notably, ssDNA abundance decreased with sample dilution while large dsDNA genomes (e.g., Caudovirales) initially increased in abundance with dilution before gradually decreasing with further dilution in wastewater samples. The present study revealed the inherent biases associated with different components of viral metagenomic methods applied to wastewater. Overall, these results provide a well-characterized approach for effectively conducting viral metagenomics analysis of wastewater and reveal that dilution can effectively mitigate MDA bias.
mSphere | 2017
Nichole E. Brinkman; G. Shay Fout; Scott P. Keely
Enterovirus infections are often not tracked or reported to health officials. This makes it hard to know how many people in a community are infected with these viruses at any given time. Here, we explored enterovirus in municipal wastewater to look at this issue. We show that enteroviruses are present year-round in municipal wastewater at levels of up to 800,000 genomic copies per liter. We estimate that, on average, 2.8% of the people contributing to the wastewater shed enterovirus daily. Sequence analysis of the viral capsid protein 4 gene shows that 8 enterovirus types are key drivers of seasonal trends. Populations of Enterovirus A members peak in the spring, while Enterovirus B types are most prevalent during the summer and fall months and Enterovirus C members influence the winter months. Enterovirus D was observed sporadically and did not influence seasonal trends. ABSTRACT Enteroviruses are RNA viruses that are responsible for both mild gastroenteritis and mild respiratory illnesses as well as debilitating diseases such as meningitis and myocarditis. The disease burden of enteroviruses in the United States is difficult to assess because most infections are not recorded. Since infected individuals shed enterovirus in feces and urine, surveillance of municipal wastewater can reveal the diversity of enteroviruses circulating in human populations. Therefore, monthly municipal wastewater samples were collected for 1 year and enteroviruses were quantified by reverse transcriptase quantitative PCR and identified by next-generation, high-throughput sequencing. Enterovirus concentrations ranged from 3.8 to 5.9 log10 equivalent copies/liter in monthly samples. From the mean monthly concentration, it can be estimated that 2.8% of the contributing population was shedding enterovirus daily. Sequence analysis showed that Enterovirus A and Enterovirus B alternate in predominance, with Enterovirus B comprising over 80% of the reads during the summer and fall months and Enterovirus A accounting for >45% of the reads in spring. Enterovirus C was observed throughout the year, while Enterovirus D was present intermittently. Principal-component analysis further supported the date corresponding to enterovirus seasonal trends as CVA6 (Enterovirus A) was predominant in the spring months; CVB3, CVB5, and E9 (Enterovirus B) were predominant in the summer and fall months; and CVA1, CVA19, and CVA22 (Enterovirus C) and EV97 (Enterovirus B) were predominant in winter. Rhinoviruses were also observed. Wastewater monitoring of human enterovirus provided improved insight into the seasonal patterns of enteroviruses circulating in communities and can contribute to understanding of enterovirus disease burden. IMPORTANCE Enterovirus infections are often not tracked or reported to health officials. This makes it hard to know how many people in a community are infected with these viruses at any given time. Here, we explored enterovirus in municipal wastewater to look at this issue. We show that enteroviruses are present year-round in municipal wastewater at levels of up to 800,000 genomic copies per liter. We estimate that, on average, 2.8% of the people contributing to the wastewater shed enterovirus daily. Sequence analysis of the viral capsid protein 4 gene shows that 8 enterovirus types are key drivers of seasonal trends. Populations of Enterovirus A members peak in the spring, while Enterovirus B types are most prevalent during the summer and fall months and Enterovirus C members influence the winter months. Enterovirus D was observed sporadically and did not influence seasonal trends.
Toxicological Sciences | 2018
Tara R. Catron; Scott P. Keely; Nichole E. Brinkman; Todd J. Zurlinden; Charles E. Wood; Justin Wright; Drake Phelps; Emily Anneken Wheaton; Allison Kvasnicka; Shaza Gaballah; Regina Lamendella; Tamara Tal
Host-associated microbiota can biotransform xenobiotics, mediate health effects of chemical exposure, and play important roles in early development. Bisphenol A (BPA) is a widespread environmental chemical that has been associated with adverse endocrine and neurodevelopmental effects, some of which may be mediated by microbiota. Growing public concern over the safety of BPA has resulted in its replacement with structurally similar alternatives. In this study, we evaluated whether BPA and BPA alternatives alter microbiota and modulate secondary adverse behavioral effects in zebrafish. Zebrafish were developmentally exposed to BPA, Bisphenol AF (BPAF), Bisphenol B (BPB), Bisphenol F (BPF), or Bisphenol S (BPS). At 10 days post fertilization (dpf), toxicity assessments were completed and 16S rRNA gene sequencing was performed to evaluate potential chemical-dependent shifts in microbial community structure and predicted function. A standard light/dark behavioral assay was used to assess locomotor activity. Based on developmental toxicity assessments at 10 dpf, a range of potencies was observed: BPAF > BPB > BPF ∼ BPA > BPS. Analysis of 16S rRNA gene sequencing data showed significant concentration-dependent disruption of microbial community structure and enrichment of putative microbial functions with exposure to BPS, BPA, or BPF, but not BPB or BPAF. Interestingly, microbial disruption was inversely related to host developmental toxicity and estrogenicity. Exposure to BP analogs did not cause behavioral effects at 10 dpf. Our findings indicate that some BP analogs disrupt host microbiota early in life and demonstrate novel chemical-microbiota interactions that may add important context to current hazard identification strategies.
Science of The Total Environment | 2018
Eunice A. Varughese; Nichole E. Brinkman; Emily M. Anneken; Jennifer L. Cashdollar; G. Shay Fout; Edward T. Furlong; Dana W. Kolpin; Susan T. Glassmeyer; Scott P. Keely
Drinking water treatment plants rely on purification of contaminated source waters to provide communities with potable water. One group of possible contaminants are enteric viruses. Measurement of viral quantities in environmental water systems are often performed using polymerase chain reaction (PCR) or quantitative PCR (qPCR). However, true values may be underestimated due to challenges involved in a multi-step viral concentration process and due to PCR inhibition. In this study, water samples were concentrated from 25 drinking water treatment plants (DWTPs) across the US to study the occurrence of enteric viruses in source water and removal after treatment. The five different types of viruses studied were adenovirus, norovirus GI, norovirus GII, enterovirus, and polyomavirus. Quantitative PCR was performed on all samples to determine presence or absence of these viruses in each sample. Ten DWTPs showed presence of one or more viruses in source water, with four DWTPs having treated drinking water testing positive. Furthermore, PCR inhibition was assessed for each sample using an exogenous amplification control, which indicated that all of the DWTP samples, including source and treated water samples, had some level of inhibition, confirming that inhibition plays an important role in PCR-based assessments of environmental samples. PCR inhibition measurements, viral recovery, and other assessments were incorporated into a Bayesian model to more accurately determine viral load in both source and treated water. Results of the Bayesian model indicated that viruses are present in source water and treated water. By using a Bayesian framework that incorporates inhibition, as well as many other parameters that affect viral detection, this study offers an approach for more accurately estimating the occurrence of viral pathogens in environmental waters.
Parasitology Research | 2015
Sarah E. Staggs; Scott P. Keely; Michael W. Ware; Nancy Schable; Mary Jean See; Dominic Gregorio; Xuan Zou; C. Su; J. P. Dubey; Eric N. Villegas
ACS Sustainable Chemistry & Engineering | 2018
Vincent C. Reyes; Phillip B. Gedalanga; Nancy Merino; Joy D. Van Nostrand; Scott P. Keely; Susan K. De Long; Jizhong Zhou; Shaily Mahendra