Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott P. Kenney is active.

Publication


Featured researches published by Scott P. Kenney.


Journal of General Virology | 2012

Cross-species infection of pigs with a novel rabbit, but not rat, strain of hepatitis E virus isolated in the United States

Caitlin M. Cossaboom; Laura Córdoba; Brenton J. Sanford; Pablo Piñeyro; Scott P. Kenney; Barbara A. Dryman; Youchun Wang; Xiang-Jin Meng

Hepatitis E virus (HEV) is an important human pathogen. In addition to humans, HEV has also been identified in pig, chicken, mongoose, deer, rat, rabbit and fish. There are four recognized and two putative genotypes of mammalian HEV. Genotypes 1 and 2 are restricted to humans, while genotypes 3 and 4 are zoonotic. The recently identified rabbit HEV is a distant member of genotype 3. Here, we first expressed and purified the recombinant capsid protein of rabbit HEV and showed that the capsid protein of rabbit HEV cross-reacted with antibodies raised against avian, rat, swine and human HEV. Conversely, we showed that antibodies against rabbit HEV cross-reacted with capsid proteins derived from chicken, rat, swine and human HEV. Since pigs are the natural host of genotype 3 HEV, we then determined if rabbit HEV infects pigs. Twenty pigs were divided into five groups of four each and intravenously inoculated with PBS, US rabbit HEV, Chinese rabbit HEV, US rat HEV and swine HEV, respectively. Results showed that only half of the pigs inoculated with rabbit HEV had low levels of viraemia and faecal virus shedding, indicative of active but not robust HEV infection. Infection of pigs by rabbit HEV was further verified by transmission of the virus recovered from pig faeces to naïve rabbits. Pigs inoculated with rat HEV showed no evidence of infection. Preliminary results suggest that rabbit HEV is antigenically related to other HEV strains and infects pigs and that rat HEV failed to infect pigs.


Journal of Virology | 2009

Genetic Evidence for a Connection between Rous Sarcoma Virus Gag Nuclear Trafficking and Genomic RNA Packaging

Rachel Garbitt-Hirst; Scott P. Kenney; Leslie J. Parent

ABSTRACT The packaging of retroviral genomic RNA (gRNA) requires cis-acting elements within the RNA and trans-acting elements within the Gag polyprotein. The packaging signal ψ, at the 5′ end of the viral gRNA, binds to Gag through interactions with basic residues and Cys-His box RNA-binding motifs in the nucleocapsid. Although specific interactions between Gag and gRNA have been demonstrated previously, where and when they occur is not well understood. We discovered that the Rous sarcoma virus (RSV) Gag protein transiently localizes to the nucleus, although the roles of Gag nuclear trafficking in virus replication have not been fully elucidated. A mutant of RSV (Myr1E) with enhanced plasma membrane targeting of Gag fails to undergo nuclear trafficking and also incorporates reduced levels of gRNA into virus particles compared to those in wild-type particles. Based on these results, we hypothesized that Gag nuclear entry might facilitate gRNA packaging. To test this idea by using a gain-of-function genetic approach, a bipartite nuclear localization signal (NLS) derived from the nucleoplasmin protein was inserted into the Myr1E Gag sequence (generating mutant Myr1E.NLS) in an attempt to restore nuclear trafficking. Here, we report that the inserted NLS enhanced the nuclear localization of Myr1E.NLS Gag compared to that of Myr1E Gag. Also, the NLS sequence restored gRNA packaging to nearly wild-type levels in viruses containing Myr1E.NLS Gag, providing genetic evidence linking nuclear trafficking of the retroviral Gag protein with gRNA incorporation.


Journal of Virology | 2011

Mutational Analysis of the Hypervariable Region of Hepatitis E Virus Reveals Its Involvement in the Efficiency of Viral RNA Replication

Raghavendra Sumanth Pudupakam; Scott P. Kenney; Laura Córdoba; Yao-Wei Huang; Barbara A. Dryman; Tanya LeRoith; F. W. Pierson; Xiang-Jin Meng

ABSTRACT The RNA genome of the hepatitis E virus (HEV) contains a hypervariable region (HVR) in ORF1 that tolerates small deletions with respect to infectivity. To further investigate the role of the HVR in HEV replication, we constructed a panel of mutants with overlapping deletions in the N-terminal, central, and C-terminal regions of the HVR by using a genotype 1 human HEV luciferase replicon and analyzed the effects of deletions on viral RNA replication in Huh7 cells. We found that the replication levels of the HVR deletion mutants were markedly reduced in Huh7 cells, suggesting a role of the HVR in viral replication efficiency. To further verify the results, we constructed HVR deletion mutants by using a genetically divergent, nonmammalian avian HEV, and similar effects on viral replication efficiency were observed when the avian HEV mutants were tested in LMH cells. Furthermore, the impact of complete HVR deletion on virus infectivity was tested in chickens, using an avian HEV mutant with a complete HVR deletion. Although the deletion mutant was still replication competent in LMH cells, the complete HVR deletion resulted in a loss of avian HEV infectivity in chickens. Since the HVR exhibits extensive variations in sequence and length among different HEV genotypes, we further examined the interchangeability of HVRs and demonstrated that HVR sequences are functionally exchangeable between HEV genotypes with regard to viral replication and infectivity in vitro, although genotype-specific HVR differences in replication efficiency were observed. The results showed that although the HVR tolerates small deletions with regard to infectivity, it may interact with viral and host factors to modulate the efficiency of HEV replication.


Virus Research | 2011

Expression of the putative ORF1 capsid protein of Torque teno sus virus 2 (TTSuV2) and development of Western blot and ELISA serodiagnostic assays: Correlation between TTSuV2 viral load and IgG antibody level in pigs

Yao-Wei Huang; Kylie K. Harrall; Barbara A. Dryman; Nathan M. Beach; Scott P. Kenney; Tanja Opriessnig; Eric Martin Vaughn; Michael B. Roof; Xiang-Jin Meng

Porcine Torque teno virus (TTV) has a single-stranded circular DNA genome and is currently classified into a new genus Iotatorquevirus with two species in a newly established family Anelloviridae. Viral DNA of both porcine TTV species (TTSuV1 and TTSuV2) has a high prevalence in both healthy and diseased pigs worldwide and multiple infections of TTSuV with distinct genotypes or subtypes of the same species has been documented in the United States and in Europe. However, the prevalence of specific TTSuV antibodies in pigs remains unknown. In this study, the putative ORF1 capsid protein from TTSuV2 isolate PTTV2c-VA was expressed in Escherichia coli. The purified recombinant ORF1 protein was used as the antigen for the development of Western blot and indirect ELISA to detect TTSuV2-specific IgG antibodies in pig sera. The results revealed a relatively high rate of seropositivity to TTSuV2 in conventional pigs from different sources but not in gnotobiotic pigs. Overall, pigs with undetectable TTSuV2 viral load were more likely to have a lower anti-TTSuV2 antibody level. An analysis of 10 conventional pigs during a 2-month period showed that decreased viral loads or presumed virus clearance were associated with elevated anti-ORF1 IgG antibody levels. Interestingly, porcine circovirus associated disease (PCVAD)-affected pigs had a significantly lower level of TTSuV2 antibody than PCVAD-unaffected pigs (p<0.01). This is the first study to establish essential serodiagnostic tools for investigation of TTSuV seroprevalence and infection dynamics, which will help elucidate the potential pathogenicity of TTSuV infection in pigs.


Journal of Virology | 2012

The PSAP Motif within the ORF3 Protein of an Avian Strain of the Hepatitis E Virus Is Not Critical for Viral Infectivity In Vivo but Plays a Role in Virus Release

Scott P. Kenney; Raghavendra Sumanth Pudupakam; Yao-Wei Huang; F. W. Pierson; Tanya LeRoith; Xiang-Jin Meng

ABSTRACT The ORF3 protein of hepatitis E virus (HEV) is a multifunctional protein important for virus replication. The ORF3 proteins from human, swine, and avian strains of HEV contain a conserved PXXP amino acid motif, resembling either Src homology 3 (SH3) cell signaling interaction motifs or “late domains” involved in host cell interactions aiding in particle release. Using an avian strain of HEV, we determined the roles of the conserved prolines within the PREPSAPP motif in HEV replication and infectivity in Leghorn male hepatoma (LMH) chicken liver cells and in chickens. Each proline was changed to alanine to produce 8 avian HEV mutants containing single mutations (P64, P67, P70, and P71 to A), double mutations (P64/67A, P64/70A, and P67/70A), and triple mutations (P64/67/70A). The results showed that avian HEV mutants are replication competent in vitro, and none of the prolines in the PXXPXXPP motif are essential for infectivity in vivo; however, the second and third prolines appear to aid in fecal virus shedding, suggesting that the PSAP motif, but not the PREP motif, is involved in virus release. We also showed that the PSAP motif interacts with the host protein tumor suppressor gene 101 (TSG101) and that altering any proline within the PSAP motif disrupts this interaction. However, we showed that the ORF2 protein expressed in LMH cells is efficiently released from the cells in the absence of ORF3 and that coexpression of ORF2 and ORF3 did not act synergistically in this release, suggesting that another factor(s) such as ORF1 or viral genomic RNA may be necessary for proper particle release.


Journal of Virology | 2008

Intermolecular Interactions between Retroviral Gag Proteins in the Nucleus

Scott P. Kenney; Timothy L. Lochmann; Cullen L. Schmid; Leslie J. Parent

ABSTRACT The retroviral Gag polyprotein directs virus particle assembly, resulting in the release of virions from the plasma membranes of infected cells. The earliest steps in assembly, those immediately following Gag synthesis, are very poorly understood. For Rous sarcoma virus (RSV), Gag proteins are synthesized in the cytoplasm and then undergo transient nuclear trafficking before returning to the cytoplasm for transport to the plasma membrane. Thus, RSV provides a useful model to study the initial steps in assembly because the early and later stages are spatially separated by the nuclear envelope. We previously described mutants of RSV Gag that are defective in nuclear export, thereby isolating these “trapped” Gag proteins at an early assembly step. Using the nuclear export mutants, we asked whether Gag protein-protein interactions occur within the nucleus. Complementation experiments revealed that the wild-type Gag protein could partially rescue export-defective Gag mutants into virus-like particles (VLPs). Additionally, the export mutants had a trans-dominant negative effect on wild-type Gag, interfering with its release into VLPs. Confocal imaging of wild-type and mutant Gag proteins bearing different fluorescent tags suggested that complementation between Gag proteins occurred in the nucleus. Additional evidence for nuclear Gag-Gag interactions was obtained using fluorescence resonance energy transfer, and we found that the formation of intranuclear Gag complexes was dependent on the NC domain. Bimolecular fluorescence complementation allowed the direct visualization of intranuclear Gag-Gag dimers. Together, these experimental results strongly suggest that RSV Gag proteins are capable of interacting within the nucleus.


Journal of Virology | 2007

Overlapping Roles of the Rous Sarcoma Virus Gag p10 Domain in Nuclear Export and Virion Core Morphology

Lisa Z. Scheifele; Scott P. Kenney; Tina M. Cairns; Rebecca C. Craven; Leslie J. Parent

ABSTRACT Nucleocytoplasmic shuttling of the Rous sarcoma virus (RSV) Gag polyprotein is an integral step in virus particle assembly. A nuclear export signal (NES) was previously identified within the p10 domain of RSV Gag. Gag mutants containing deletions of the p10 NES or mutations of critical hydrophobic residues at positions 219, 222, 225, or 229 become trapped within the nucleus and exhibit defects in the efficiency of virus particle release. To investigate other potential roles for Gag nuclear trafficking in RSV replication, we created viruses bearing NES mutant Gag proteins. Viruses carrying p10 mutations produced low levels of particles, as anticipated, and those particles that were released were noninfectious. The p10 mutant viruses contained approximately normal amounts of Gag, Gag-Pol, and Env proteins and genomic viral RNA (vRNA), but several major structural defects were found. Thin-section transmission electron microscopy revealed that the mature particles appeared misshapen, while the viral cores were cylindrical, horseshoe-shaped, or fragmented, with some particles containing multiple small, electron-dense aggregates. Immature virus-like particles produced by the expression of Gag proteins bearing p10 mutations were also aberrant, with both spherical and tubular filamentous particles produced. Interestingly, the secondary structure of the encapsidated vRNA was altered; although dimeric vRNA was predominant, there was an additional high-molecular-weight fraction. Together, these results indicate that the p10 NES domain of Gag is critical for virus replication and that it plays overlapping roles required for the nuclear shuttling of Gag and for the maintenance of proper virion core morphology.


Vaccine | 2011

Productive infection of human hepatocellular carcinoma cells by porcine circovirus type 1

Nathan M. Beach; Laura Córdoba; Scott P. Kenney; Xiang-Jin Meng

Porcine circovirus type 1 (PCV1), a small DNA virus in pigs, recently gained its notoriety when commercial human rotavirus vaccines were discovered to be contaminated by infectious PCV1. Here we report, for the first time, definitive evidence of productive PCV1 infection in a subclone of human hepatocellular carcinoma cell line (Huh-7, subclone 10-3). Infectious virus was detected in the lysates of infected Huh-7 cells by immunofluorescent assay (IFA) and can be serially passaged in Huh-7-S10-3 cells. The growth kinetic of PCV1 in Huh-7-S10-3 cells was determined in a one-step growth curve using IFA and a quantitative PCR assay. PCV1 achieved a lower infectious titer in Huh-7-S10-3 human cells compared to the titer normally achieved in porcine PK-15 cells from published studies. While the direct relevance to vaccine safety of PCV1 growth in human hepatocellular carcinoma cells is unclear, these data should be considered in further evaluation of vaccines and other products that could contain infectious PCV1.


Vaccine | 2012

Assessment of the cross-protective capability of recombinant capsid proteins derived from pig, rat, and avian hepatitis E viruses (HEV) against challenge with a genotype 3 HEV in pigs

Brenton J. Sanford; Tanja Opriessnig; Scott P. Kenney; Barbara A. Dryman; Laura Córdoba; Xiang-Jin Meng

Hepatitis E virus (HEV), the causative agent of hepatitis E, is primarily transmitted via the fecal-oral route through contaminated water supplies, although many sporadic cases of hepatitis E are transmitted zoonotically via direct contact with infected animals or consumption of contaminated animal meats. Genotypes 3 and 4 HEV are zoonotic and infect humans and other animal species, whereas genotypes 1 and 2 HEV are restricted to humans. There exists a single serotype of HEV, although the cross-protective ability among the animal HEV strains is unknown. Thus, in this study we expressed and characterized N-terminal truncated ORF2 capsid antigens derived from swine, rat, and avian HEV strains and evaluated their cross-protective ability in a pig challenge model. Thirty, specific-pathogen-free, pigs were divided into 5 groups of 6 pigs each, and each group of pigs were vaccinated with 200 μg of swine HEV, rat HEV, or avian HEV ORF2 antigen or PBS buffer (2 groups) as positive and negative control groups. After a booster dose immunization at 2 weeks post-vaccination, the vaccinated animals all seroconverted to IgG anti-HEV. At 4 weeks post-vaccination, the animals were intravenously challenged with a genotype 3 mammalian HEV, and necropsied at 4 weeks post-challenge. Viremia, fecal virus shedding, and liver histological lesions were compared to assess the protective and cross-protective abilities of these antigens against HEV challenge in pigs. The results indicated that pigs vaccinated with truncated recombinant capsid antigens derived from three animal strains of HEV induced a strong IgG anti-HEV response in vaccinated pigs, but these antigens confer only partial cross-protection against a genotype 3 mammalian HEV. The results have important implications for the efficacy of current vaccines and for future vaccine development, especially against the novel zoonotic animal strains of HEV.


Journal of Virology | 2015

The Lysine Residues within the Human Ribosomal Protein S17 Sequence Naturally Inserted into the Viral Nonstructural Protein of a Unique Strain of Hepatitis E Virus Are Important for Enhanced Virus Replication

Scott P. Kenney; Xiang-Jin Meng

ABSTRACT Hepatitis E virus (HEV) is an important but extremely understudied human pathogen. Due largely to the lack of an efficient cell culture system for HEV, the molecular mechanisms of HEV replication and pathogenesis are poorly understood. Recently, a unique genotype 3 strain of HEV recovered from a chronically infected patient was adapted for growth in HepG2C3A human hepatoma cells. The adaptation of the Kernow C-1 P6 HEV to propagate in HepG2C3A cells selected for a rare virus recombinant that contains an insertion of a 171-nucleotide sequence encoding amino acids 21 to 76 of the human ribosomal protein S17 (RPS17) within the hypervariable region (HVR) of the HEV ORF1 protein. When the RPS17 insertion was placed into a strain of genotype 1 HEV which infects only humans, it expanded the host range of the virus, allowing it to infect cell lines from multiple animal species, including cow, dog, cat, chicken, and hamster. In this study, we utilized forward and reverse genetics to attempt to define which aspects of the RPS17 insertion allow for the ability of the Kernow C-1 P6 HEV to adapt in cell culture and allow for expanded host tropism. We demonstrate that the RPS17 sequence insertion in HEV bestows novel nuclear/nucleolar trafficking capabilities to the ORF1 protein of Kernow P6 HEV and that lysine residues within the RPS17 insertion, but not nuclear localization of the ORF1 protein, correlate with the enhanced replication of the HEV Kernow C-1 P6 strain. The results from this study have important implications for understanding the mechanism of cross-species infection and replication of HEV. IMPORTANCE HEV is an important pathogen worldwide. The virus causes high mortality (up to 30%) in pregnant women and has been recognized to cause chronic hepatitis in immunocompromised populations. The life cycle of HEV has been understudied due to a lack of sufficient cell culture systems in which to propagate the virus. Recently, insertions and rearrangements of the hypervariable region (HVR) within the HEV genome, allowing for cell culture adaptation and expansion of the host range, have been reported. We utilized these cell culture-adapted HEV strains to assess how the HVR may be involved in virus replication and host range. We provide evidence that insertion of the RPS17 sequence in HEV likely confers nuclear trafficking capabilities to the nonstructural protein of the virus and that lysine residues within the RPS17 insertion are important for enhanced replication of the virus. These data will help to elucidate the mechanism of cross-species infection of HEV in the future.

Collaboration


Dive into the Scott P. Kenney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yao-Wei Huang

Virginia–Maryland Regional College of Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge