Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott R. Burrows is active.

Publication


Featured researches published by Scott R. Burrows.


Nature | 2012

Immune self-reactivity triggered by drug-modified HLA-peptide repertoire

Patricia T. Illing; Julian P. Vivian; Nadine L. Dudek; Lyudmila Kostenko; Zhenjun Chen; Mandvi Bharadwaj; John J. Miles; Lars Kjer-Nielsen; Stephanie Gras; Nicholas A. Williamson; Scott R. Burrows; Anthony W. Purcell; Jamie Rossjohn; James McCluskey

Human leukocyte antigens (HLAs) are highly polymorphic proteins that initiate immunity by presenting pathogen-derived peptides to T cells. HLA polymorphisms mostly map to the antigen-binding cleft, thereby diversifying the repertoire of self-derived and pathogen-derived peptide antigens selected by different HLA allotypes. A growing number of immunologically based drug reactions, including abacavir hypersensitivity syndrome (AHS) and carbamazepine-induced Stevens–Johnson syndrome (SJS), are associated with specific HLA alleles. However, little is known about the underlying mechanisms of these associations, including AHS, a prototypical HLA-associated drug reaction occurring exclusively in individuals with the common histocompatibility allele HLA-B*57:01, and with a relative risk of more than 1,000 (refs 6, 7). We show that unmodified abacavir binds non-covalently to HLA-B*57:01, lying across the bottom of the antigen-binding cleft and reaching into the F-pocket, where a carboxy-terminal tryptophan typically anchors peptides bound to HLA-B*57:01. Abacavir binds with exquisite specificity to HLA-B*57:01, changing the shape and chemistry of the antigen-binding cleft, thereby altering the repertoire of endogenous peptides that can bind HLA-B*57:01. In this way, abacavir guides the selection of new endogenous peptides, inducing a marked alteration in ‘immunological self’. The resultant peptide-centric ‘altered self’ activates abacavir-specific T-cells, thereby driving polyclonal CD8 T-cell activation and a systemic reaction manifesting as AHS. We also show that carbamazepine, a widely used anti-epileptic drug associated with hypersensitivity reactions in HLA-B*15:02 individuals, binds to this allotype, producing alterations in the repertoire of presented self peptides. Our findings simultaneously highlight the importance of HLA polymorphism in the evolution of pharmacogenomics and provide a general mechanism for some of the growing number of HLA-linked hypersensitivities that involve small-molecule drugs.


Immunity | 1998

HLA-B27–Restricted Antigen Presentation in the Absence of Tapasin Reveals Polymorphism in Mechanisms of HLA Class I Peptide Loading

Chen Au Peh; Scott R. Burrows; Megan J. Barnden; Rajiv Khanna; Peter Cresswell; Denis J. Moss; James McCluskey

Tapasin is a resident ER protein believed to be critical for antigen presentation by HLA class I molecules. We demonstrate that allelic variation in MHC class I molecules influences their dependence on tapasin for peptide loading and antigen presentation. HLA-B*2705 molecules achieve high levels of surface expression and present specific viral peptides in the absence of tapasin. In contrast, HLA-B*4402 molecules are highly dependent upon human tapasin for these functions, while HLA-B8 molecules are intermediate in this regard. Significantly, HLA-B*2705 like HLA-B*4402, requires tapasin to associate efficiently with TAP (transporters associated with antigen processing). The unusual ability of HLA-B*2705 to form peptide complexes without associating with TAP or tapasin confers flexibility in the repertoire of peptides presented by this molecule. We speculate that these properties might contribute to the role of HLA-B27 in conferring susceptibility to inflammatory spondyloarthropathies.


European Journal of Immunology | 1998

Identification of cytotoxic T cell epitopes within Epstein-Barr virus (EBV) oncogene latent membrane protein 1 (LMP1): evidence for HLA A2 supertype-restricted immune recognition of EBV-infected cells by LMP1-specific cytotoxic T lymphocytes

Rajiv Khanna; Scott R. Burrows; John M. Nicholls; Leith Poulsen

Epstein‐Barr virus (EBV) nuclear antigen 1 (EBNA1) and latent membrane proteins (LMP) are the only antigens consistently expressed in malignancies such as nasopharyngeal carcinoma (NPC) and Hodgkins disease (HD). Since EBNA1 is not recognized by EBV‐specific cytotoxic T lymphocytes (CTL), there is increasing interest in the identification of the potential target epitopes within LMP1. Although LMP1‐specific CTL have been isolated from seropositive individuals, earlier attempts to identify the peptide epitopes recognized by these T cells have been unsuccessful. In the present report we used a novel protocol to identify CTL epitopes within LMP1 which can be recognized by both polyclonal and clonal CTL. Firstly, a computer‐based program was employed to identify the potential HLA‐binding peptides within LMP1. Polyclonal CD8+ CTL were then isolated from seropositive donors that recognized the peptide epitopes YLLEMLWRL and YLQQNWWTL from LMP1 in association with HLA A2. Limiting dilution analysis of the memory CTL response revealed that the LMP1‐specific CTL response constitutes a minor component of the CTL response in healthy virus carriers. Interestingly, analysis of YLLEMLWRL‐specific CTL revealed that these CTL were able to lyse EBV‐infected B cells expressing different HLA A2 supertype alleles including A*0201, A*0202, A*0203, A*0204, A*0206, A*6802 and A*6901. These data strongly support the notion that HLA class I supertype‐restricted CTL may be of significant use in the development of peptide‐based immunotherapeutics against EBV‐associated malignancies in different ethnic populations.


Journal of Experimental Medicine | 2003

A Naturally Selected Dimorphism within the HLA-B44 Supertype Alters Class I Structure, Peptide Repertoire, and T Cell Recognition

Whitney A. Macdonald; Anthony W. Purcell; Nicole A. Mifsud; Lauren K. Ely; David S. Williams; Linus Chang; Jeffrey J. Gorman; Craig S. Clements; Lars Kjer-Nielsen; David M. Koelle; Scott R. Burrows; Brian D. Tait; Rhonda Holdsworth; Andrew G. Brooks; George O. Lovrecz; Louis Lu; Jamie Rossjohn; James McCluskey

HLA-B*4402 and B*4403 are naturally occurring MHC class I alleles that are both found at a high frequency in all human populations, and yet they only differ by one residue on the α2 helix (B*4402 Asp156→B*4403 Leu156). CTLs discriminate between HLA-B*4402 and B*4403, and these allotypes stimulate strong mutual allogeneic responses reflecting their known barrier to hemopoeitic stem cell transplantation. Although HLA-B*4402 and B*4403 share >95% of their peptide repertoire, B*4403 presents more unique peptides than B*4402, consistent with the stronger T cell alloreactivity observed toward B*4403 compared with B*4402. Crystal structures of B*4402 and B*4403 show how the polymorphism at position 156 is completely buried and yet alters both the peptide and the heavy chain conformation, relaxing ligand selection by B*4403 compared with B*4402. Thus, the polymorphism between HLA-B*4402 and B*4403 modifies both peptide repertoire and T cell recognition, and is reflected in the paradoxically powerful alloreactivity that occurs across this “minimal” mismatch. The findings suggest that these closely related class I genes are maintained in diverse human populations through their differential impact on the selection of peptide ligands and the T cell repertoire.


Immunity | 2009

T cell allorecognition via molecular mimicry.

Whitney A. Macdonald; Zhenjun Chen; Stephanie Gras; Julia K. Archbold; Fleur E. Tynan; Craig S. Clements; Mandvi Bharadwaj; Lars Kjer-Nielsen; Philippa M. Saunders; Matthew C. J. Wilce; Fran Crawford; Brian Stadinsky; David C. Jackson; Andrew G. Brooks; Anthony W. Purcell; John W. Kappler; Scott R. Burrows; Jamie Rossjohn; James McCluskey

T cells often alloreact with foreign human leukocyte antigens (HLA). Here we showed the LC13 T cell receptor (TCR), selected for recognition on self-HLA-B( *)0801 bound to a viral peptide, alloreacts with B44 allotypes (HLA-B( *)4402 and HLA-B( *)4405) bound to two different allopeptides. Despite extensive polymorphism between HLA-B( *)0801, HLA-B( *)4402, and HLA-B( *)4405 and the disparate sequences of the viral and allopeptides, the LC13 TCR engaged these peptide-HLA (pHLA) complexes identically, accommodating mimicry of the viral peptide by the allopeptide. The viral and allopeptides adopted similar conformations only after TCR ligation, revealing an induced-fit mechanism of molecular mimicry. The LC13 T cells did not alloreact against HLA-B( *)4403, and the single residue polymorphism between HLA-B( *)4402 and HLA-B( *)4403 affected the plasticity of the allopeptide, revealing that molecular mimicry was associated with TCR specificity. Accordingly, molecular mimicry that is HLA and peptide dependent is a mechanism for human T cell alloreactivity between disparate cognate and allogeneic pHLA complexes.


Journal of Experimental Medicine | 2004

Endogenous Presentation of CD8 T Cell Epitopes from Epstein-Barr Virus-encoded Nuclear Antigen 1

Judy Tellam; Geoff Connolly; Katherine J. Green; John J. Miles; Denis J. Moss; Scott R. Burrows; Rajiv Khanna

Epstein-Barr virus (EBV)–encoded nuclear antigen (EBNA)1 is thought to escape cytotoxic T lymphocyte (CTL) recognition through either self-inhibition of synthesis or by blockade of proteasomal degradation by the glycine-alanine repeat (GAr) domain. Here we show that EBNA1 has a remarkably varied cell type–dependent stability. However, these different degradation rates do not correspond to the level of major histocompatibility complex class I–restricted presentation of EBNA1 epitopes. In spite of the highly stable expression of EBNA1 in B cells, CTL epitopes derived from this protein are efficiently processed and presented to CD8+ T cells. Furthermore, we show that EBV-infected B cells can readily activate EBNA1-specific memory T cell responses from healthy virus carriers. Functional assays revealed that processing of these EBNA1 epitopes is proteasome and transporter associated with antigen processing dependent. We also show that the endogenous presentation of these epitopes is dependent on the newly synthesized protein rather than the long-lived stable EBNA1. Based on these observations, we propose that defective ribosomal products, not the full-length antigen, are the primary source of endogenously processed CD8+ T cell epitopes from EBNA1.


Journal of Immunology | 2001

Quantitative and Qualitative Influences of Tapasin on the Class I Peptide Repertoire

Anthony W. Purcell; Jeffrey J. Gorman; Marina García-Peydró; Alberto Paradela; Scott R. Burrows; Gert H. Talbo; Nihay Laham; Chen Au Peh; Eric C. Reynolds; José A. López de Castro; James McCluskey

Tapasin is critical for efficient loading and surface expression of most HLA class I molecules. The high level surface expression of HLA-B*2705 on tapasin-deficient 721.220 cells allowed the influence of this chaperone on peptide repertoire to be examined. Comparison of peptides bound to HLA-B*2705 expressed on tapasin-deficient and -proficient cells by mass spectrometry revealed an overall reduction in the recovery of B*2705-bound peptides isolated from tapasin-deficient cells despite similar yields of B27 heavy chain and β2-microglobulin. This indicated that a proportion of suboptimal ligands were associated with B27, and they were lost during the purification process. Notwithstanding this failure to recover these suboptimal peptides, there was substantial overlap in the repertoire and biochemical properties of peptides recovered from B27 complexes derived from tapasin-positive and -negative cells. Although many peptides were preferentially or uniquely isolated from B*2705 in tapasin-positive cells, a number of species were preferentially recovered in the absence of tapasin, and some of these peptide ligands have been sequenced. In general, these ligands did not exhibit exceptional binding affinity, and we invoke an argument based on lumenal availability and affinity to explain their tapasin independence. The differential display of peptides in tapasin-negative and -positive cells was also apparent in the reactivity of peptide-sensitive alloreactive CTL raised against tapasin-positive and -negative targets, demonstrating the functional relevance of the biochemical observation of changes in peptide repertoire in the tapasin-deficient APC. Overall, the data reveal that tapasin quantitatively and qualitatively influences ligand selection by class I molecules.


Journal of Biological Chemistry | 2005

High resolution structures of highly bulged viral epitopes bound to major histocompatibility complex class I: implications for T-cell receptor engagement and T-cell immunodominance

Fleur E. Tynan; Natalie A. Borg; John J. Miles; Travis Beddoe; Diah Elhassen; Sharon L. Silins; Wendy J. van Zuylen; Anthony W. Purcell; Lars Kjer-Nielsen; James McCluskey; Scott R. Burrows; Jamie Rossjohn

Although HLA class I alleles can bind epitopes up to 14 amino acids in length, little is known about the immunogenicity or the responding T-cell repertoire against such determinants. Here, we describe an HLA-B*3508-restricted cytotoxic T lymphocyte response to a 13-mer viral epitope (LPEPLPQGQLTAY). The rigid, centrally bulged epitope generated a biased T-cell response. Only the N-terminal face of the peptide bulge was critical for recognition by the dominant clonotype SB27. The SB27 public T-cell receptor (TcR) associated slowly onto the complex between the bulged peptide and the major histocompatibility complex, suggesting significant remodeling upon engagement. The broad antigen-binding cleft of HLA-B*3508 represents a critical feature for engagement of the public TcR, as the narrower binding cleft of HLA-B*3501LPEPLPQGQLTAY, which differs from HLA-B*3508 by a single amino acid polymorphism (Arg156 → Leu), interacted poorly with the dominant TcR. Biased TcR usage in this cytotoxic T lymphocyte response appears to reflect a dominant role of the prominent peptide·major histocompatibility complex class I surface.


Blood | 2013

Peptide length determines the outcome of TCR/peptide-MHCI engagement

Julia Ekeruche-Makinde; John J. Miles; Hugo A. van den Berg; Ania Skowera; David K. Cole; Garry Dolton; Andrea J. A. Schauenburg; Mai Ping Tan; Johanne M. Pentier; Sian Llewellyn-Lacey; Kim M. Miles; Anna M. Bulek; Mathew Clement; Tamsin Williams; Andrew Trimby; Mick Bailey; Pierre J. Rizkallah; Jamie Rossjohn; Mark Peakman; David A. Price; Scott R. Burrows; Andrew K. Sewell; Linda Wooldridge

αβ-TCRs expressed at the CD8(+) T-cell surface interact with short peptide fragments (p) bound to MHC class I molecules (pMHCI). The TCR/pMHCI interaction is pivotal in all aspects of CD8(+) T-cell immunity. However, the rules that govern the outcome of TCR/pMHCI engagement are not entirely understood, and this is a major barrier to understanding the requirements for both effective immunity and vaccination. In the present study, we discovered an unexpected feature of the TCR/pMHCI interaction by showing that any given TCR exhibits an explicit preference for a single MHCI-peptide length. Agonists of nonpreferred length were extremely rare, suboptimal, and often entirely distinct in sequence. Structural analysis indicated that alterations in peptide length have a major impact on antigenic complexity, to which individual TCRs are unable to adapt. This novel finding demonstrates that the outcome of TCR/pMHCI engagement is determined by peptide length in addition to the sequence identity of the MHCI-bound peptide. Accordingly, the effective recognition of pMHCI Ag, which is a prerequisite for successful CD8(+) T-cell immunity and protective vaccination, can only be achieved by length-matched Ag-specific CD8(+) T-cell clonotypes.


PLOS Pathogens | 2014

CD8+ T Cells from a Novel T Cell Receptor Transgenic Mouse Induce Liver-Stage Immunity That Can Be Boosted by Blood-Stage Infection in Rodent Malaria

Lei Shong Lau; Daniel Fernandez-Ruiz; Vanessa Mollard; Angelika Sturm; Michelle A. Neller; Anton J. Cozijnsen; Julia L. Gregory; Gayle M. Davey; Claerwen M. Jones; Yi-Hsuan Lin; Ashraful Haque; Christian R. Engwerda; Catherine Q. Nie; Diana S. Hansen; Kenneth M. Murphy; Anthony T. Papenfuss; John J. Miles; Scott R. Burrows; Tania F. de Koning-Ward; Geoffrey I. McFadden; Francis R. Carbone; Brendan S. Crabb; William R. Heath

To follow the fate of CD8+ T cells responsive to Plasmodium berghei ANKA (PbA) infection, we generated an MHC I-restricted TCR transgenic mouse line against this pathogen. T cells from this line, termed PbT-I T cells, were able to respond to blood-stage infection by PbA and two other rodent malaria species, P. yoelii XNL and P. chabaudi AS. These PbT-I T cells were also able to respond to sporozoites and to protect mice from liver-stage infection. Examination of the requirements for priming after intravenous administration of irradiated sporozoites, an effective vaccination approach, showed that the spleen rather than the liver was the main site of priming and that responses depended on CD8α+ dendritic cells. Importantly, sequential exposure to irradiated sporozoites followed two days later by blood-stage infection led to augmented PbT-I T cell expansion. These findings indicate that PbT-I T cells are a highly versatile tool for studying multiple stages and species of rodent malaria and suggest that cross-stage reactive CD8+ T cells may be utilized in liver-stage vaccine design to enable boosting by blood-stage infections.

Collaboration


Dive into the Scott R. Burrows's collaboration.

Top Co-Authors

Avatar

Denis J. Moss

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Rajiv Khanna

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katherine K. Matthews

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Thomas S. Watkins

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Han Siean Lee

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yide Wong

QIMR Berghofer Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge