Scott R. Frank
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Scott R. Frank.
EMBO Reports | 2003
Scott R. Frank; Tiziana Parisi; Stefan Taubert; Paula C. Fernandez; Miriam Fuchs; Ho Man Chan; David M. Livingston; Bruno Amati
The transcription factor MYC binds specific DNA sites in cellular chromatin and induces the acetylation of histones H3 and H4. However, the histone acetyltransferases (HATs) that are responsible for these modifications have not yet been identified. MYC associates with TRRAP, a subunit of distinct macromolecular complexes that contain the HATs GCN5/PCAF or TIP60. Although the association of MYC with GCN5 has been shown, its interaction with TIP60 has never been analysed. Here, we show that MYC associates with TIP60 and recruits it to chromatin in vivo with four other components of the TIP60 complex: TRRAP, p400, TIP48 and TIP49. Overexpression of enzymatically inactive TIP60 delays the MYC‐induced acetylation of histone H4, and also reduces the level of MYC binding to chromatin. Thus, the TIP60 HAT complex is recruited to MYC‐target genes and, probably with other other HATs, contributes to histone acetylation in response to mitogenic signals.
Journal of Biological Chemistry | 1998
Scott R. Frank; Sunil Upender; Steen H. Hansen; James E. Casanova
ADP-ribosylation factors (ARFs) constitute a family of small monomeric GTPases. ARFs 1 and 3 function in the recruitment of coat proteins to membranes of the Golgi apparatus, whereas ARF6 is localized to the plasma membrane, where it appears to modulate both the assembly of the actin cytoskeleton and endocytosis. Like other GTPases, ARF activation is facilitated by specific guanine nucleotide exchange factors (GEFs). ARNO (ARF nucleotide-binding site opener) is a member of a growing family of ARF-GEFs that share a common, tripartite structure consisting of an N-terminal coiled-coil domain, a central domain with homology to the yeast protein Sec7p, and a C-terminal pleckstrin homology domain. Recently, ARNO and its close homologue cytohesin-1 were found to catalyze in vitronucleotide exchange on ARF1 and ARF3, respectively, raising the possibility that these GEFs function in the Golgi. However, the actual function of these proteins may be determined in part by their ability to interact with specific ARFs and in part by their subcellular localization. We report here that in vitro ARNO can stimulate nucleotide exchange on both ARF1 and ARF6. Furthermore, based on subcellular fractionation and immunolocalization experiments, we find that ARNO is localized to the plasma membrane in mammalian cells rather than the Golgi. It is therefore likely that ARNO functions in plasma membrane events by modulating the activity of ARF6 in vivo. These findings are consistent with the previous observation that cytohesin-1 regulates the adhesiveness of αLβ2integrins at the plasma membrane of lymphocytes.
Molecular and Cellular Biology | 2004
Stefan Taubert; Chiara Gorrini; Scott R. Frank; Tiziana Parisi; Miriam Fuchs; Ho Man Chan; David M. Livingston; Bruno Amati
ABSTRACT E2F proteins can either activate or repress transcription. Following mitogenic stimulation, repressive E2F4-p130-histone deacetylase complexes dissociate from, while activating species (E2F1, -2, and -3) associate with, target promoters. Histones H3 and H4 simultaneously become hyperacetylated, but it remains unclear whether this is a prerequisite or a consequence of E2F binding. Here, we show that activating E2F species are required for hyperacetylation of target chromatin in human cells. Overexpression of a dominant-negative (DN) E2F1 mutant in serum-stimulated T98G cells blocked all E2F binding, H4 acetylation, and, albeit partially, H3 acetylation. Target gene activation and S-phase entry were also blocked by DN E2F1. Conversely, ectopic activation of E2F1 rapidly induced H3 and H4 acetylation, demonstrating a direct role for E2F in these events. E2F1 was previously shown to bind the histone acetyltransferases (HATs) p300/CBP and PCAF/GCN5. In our hands, ectopically expressed E2F1 also bound the unrelated HAT Tip60 and induced recruitment of five subunits of the Tip60 complex (Tip60, TRRAP, p400, Tip48, and Tip49) to target promoters in vivo. Moreover, E2F-dependent recruitment of Tip60 to chromatin occurred in late G1 following serum stimulation. We speculate that the activities of multiple HAT complexes account for E2F-dependent acetylation, transcription, and S-phase entry.
Molecular Cell | 2009
Ulrik Doehn; Camilla Hauge; Scott R. Frank; Claus Jensen; Katarzyna Duda; Jakob V. Nielsen; Michael S. Cohen; Jens Vilstrup Johansen; Benny R. Winther; Leif R. Lund; Ole Winther; Jack Taunton; Steen H. Hansen; Morten Frödin
The RAS-stimulated RAF-MEK-ERK pathway confers epithelial cells with critical motile and invasive capacities during development, tissue regeneration, and carcinoma progression, often via promoting the epithelial-mesenchymal transition (EMT). Many mechanisms by which ERK exerts this control remain elusive. We demonstrate that the ERK-activated kinase RSK is necessary to induce mesenchymal motility and invasive capacities in nontransformed epithelial and carcinoma cells. RSK is sufficient to induce certain motile responses. Expression profiling analysis revealed that a primary role of RSK is to induce transcription of a potent promotile/invasive gene program by FRA1-dependent and -independent mechanisms. The program enables RSK to coordinately modulate the extracellular environment, the intracellular motility apparatus, and receptors mediating communication between these compartments to stimulate motility and invasion. These findings uncover a mechanism whereby the RAS-ERK pathway controls epithelial cell motility by identifying RSK as a key effector, from which emanate multiple highly coordinate transcription-dependent mechanisms for stimulation of motility and invasive properties.
Biochimica et Biophysica Acta | 2001
Bruno Amati; Scott R. Frank; Dubravka Donjerkovic; Stefan Taubert
Deregulated expression of the c-myc proto-oncogene contributes to malignant progression of a variety of tumors. The c-Myc protein (or Myc) is a transcription factor that positively or negatively regulates expression of distinct sets of target genes. Transcriptional activation by Myc is mediated through dimerization with Max and binding to the DNA consensus sequence CA(C/T)GTG (the E-box). Transcriptional inhibition is mediated through distinct DNA elements, and may be due to functional interference with factors that transactivate via these sequences. We review here our current knowledge on these transcriptional activities of Myc and their relationship to its biological function. The findings that Myc interacts with subunits of histone acetyl-transferase (HAT) complexes and of the ATP-dependent chromatin remodeling complex, SWI/SNF, suggest that localized changes in chromatin structure may mediate Myc function. We present a working hypothesis for the concerted action of HAT and SWI/SNF complexes in Myc-activated transcription and argue that this model should prompt re-thinking of the experimental strategies and criteria used to identify Myc target genes.
Journal of Cell Biology | 2009
Salit Tzaban; Ramiro Massol; Elizabeth H. Yen; Wendy Hamman; Scott R. Frank; Lynne A. Lapierre; Steen H. Hansen; James R. Goldenring; Richard S. Blumberg; Wayne I. Lencer
The Fc receptor FcRn traffics immunoglobulin G (IgG) in both directions across polarized epithelial cells that line mucosal surfaces, contributing to host defense. We show that FcRn traffics IgG from either apical or basolateral membranes into the recycling endosome (RE), after which the actin motor myosin Vb and the GTPase Rab25 regulate a sorting step that specifies transcytosis without affecting recycling. Another regulatory component of the RE, Rab11a, is dispensable for transcytosis, but regulates recycling to the basolateral membrane only. None of these proteins affect FcRn trafficking away from lysosomes. Thus, FcRn transcytotic and recycling sorting steps are distinct. These results are consistent with a single structurally and functionally heterogeneous RE compartment that traffics FcRn to both cell surfaces while discriminating between recycling and transcytosis pathways polarized in their direction of transport.
The EMBO Journal | 2006
Scott R. Frank; Molly R Adelstein; Steen H. Hansen
G protein‐coupled receptor kinase interactors (GITs) regulate focal adhesion (FA) turnover, cell spreading, and motility through direct interaction with paxillin and the Rac‐exchange factor Pak‐interacting exchange factor β (βPIX). However, it is not clear whether GITs function to activate or repress motility or if the predominant GIT forms, GIT1 and GIT2, serve distinct or redundant roles. Here we demonstrate an obligatory role for endogenous GIT2 in repression of lamellipodial extension and FA turnover by Rac1‐ and Cdc42‐dependent signaling pathways, respectively. Moreover, we show that the SH2–SH3 adaptor protein Crk is an essential target of GIT2 inhibition. Unexpectedly, we find that βPIX is dispensable for the effects elicited by knockdown of GIT2. Finally, we show that loss of GIT2 is sufficient to induce migration of the nontransformed epithelial cell line MCF10A. These results suggest that inactivation of GIT2 function is a required step for induction of cell motility and that GIT2 may be a target of oncogenic signaling pathways that regulate cell migration.
Seminars in Cell & Developmental Biology | 2008
Scott R. Frank; Steen H. Hansen
Arf and Rho GTP-binding proteins coordinately regulate membrane dynamics and cytoskeletal rearrangements. The Cdc42/Rac guanine nucleotide exchange factor PIX and the Arf GTPase-activating protein GIT form a stable complex in cells. The PIX-GIT complex functions to integrate signaling among Arf, Cdc42, and Rac proteins in response to cues emanating from integrins, heterotrimeric G proteins, receptor tyrosine kinases, and cell-cell interactions. A concept that emerges from the literature is that the PIX-GIT complex serves as a cassette to elicit changes in cell shape essential for polarized cell responses in a wide range of biological contexts.
Journal of Biological Chemistry | 2006
Miriam Shmuel; Lorraine C. Santy; Scott R. Frank; Dana Avrahami; James E. Casanova; Yoram Altschuler
ARNO is a guanine-nucleotide exchange protein for the ARF family of GTPases. Here we show that in polarized epithelial cells, ARNO is localized exclusively to the apical plasma membrane, where it regulates endocytosis. Expression of ARNO stimulates apical endocytosis of the polymeric immunoglobulin receptor, and coexpression of ARF6 with ARNO leads to a synergistic stimulation of apical endocytosis. Expression of a dominant negative ARF6 mutant, ARF6-T27N, antagonizes this stimulatory effect. Deletion of the N-terminal coiled-coil (CC) domain of ARNO causes the mutant ARNO to localize to both the apical and basolateral plasma membranes. Expression of the CC domain alone abolishes ARNO-induced apical endocytosis as well as co-localization of IgA-receptor complexes with ARNO and clathrin. These results suggest that the CC domain contributes to the specificity of apical localization of ARNO through association with components of the apical plasma membrane. We conclude that ARNO acts together with ARF6 to regulate apical endocytosis.
Oncogene | 2017
Scott R. Frank; Clemens P. Köllmann; J F van Lidth de Jeude; Jay R. Thiagarajah; Lars H. Engelholm; Morten Frödin; Steen H. Hansen
DOCK proteins are guanine nucleotide exchange factors for Rac and Cdc42 GTPases. DOCK1 is the founding member of the family and acts downstream of integrins via the canonical Crk-p130Cas complex to activate Rac GTPases in numerous contexts. In contrast, DOCK5, which possesses the greatest similarity to DOCK1, remains sparingly studied. Here we establish that DOCK5 has a non-redundant role in regulating motile and invasive capacities of epithelial cells. DOCK1 is constitutively associated with sites of integrin attachment termed focal adhesions (FAs). In contrast, we demonstrate that DOCK5 recruitment to FAs in Hela cells is restricted by GIT2, an established regulator of FA signaling. We determine that GIT2 is targeted to FAs in response to Rho-ROCK signaling and actomyosin contractility. Accordingly, inhibition of ROCK activity or MLC function promotes enrichment of DOCK5 in membrane protrusions and nascent cell–substratum adhesions. We further demonstrate that GIT2 inhibits the interaction of DOCK5 with Crk. Moreover, we show that depletion of GIT2 promotes DOCK5-dependent activation of the Crk-p130Cas signaling cascade to promote Rac1-mediated lamellipodial protrusion and FA turnover. The antagonism between GIT2 and DOCK5 extends to non-transformed MCF10A mammary epithelial cells, with DOCK5 ‘dialing-up’ and GIT2 ‘dialing-down’ invasiveness. Finally, we determine that DOCK5 inhibition attenuates invasion and metastasis of MDA-MB-231 cells and prolongs life span of mice injected with these cells. Collectively, our work identifies DOCK5 as a key regulator of epithelial invasion and metastasis, and demonstrates that suppression of DOCK5 by GIT2 represents a previously unappreciated mechanism for coordination of Rho and Rac GTPases.