Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott R. Waichler is active.

Publication


Featured researches published by Scott R. Waichler.


Journal of Contaminant Hydrology | 2011

Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment.

Steven B. Yabusaki; Yilin Fang; Kenneth H. Williams; Christopher J. Murray; Anderson L. Ward; Richard Dayvault; Scott R. Waichler; Darrell R. Newcomer; Frank A. Spane; Philip E. Long

Three-dimensional, coupled variably saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport and biogeochemical reactions controlling uranium behavior under pulsed acetate amendment, seasonal water table variation, spatially variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. While the simulation of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado was generally consistent with behaviors identified in previous field experiments at the Rifle IFRC site, the additional process and property detail provided several new insights. A principal conclusion from this work is that uranium bioreduction is most effective when acetate, in excess of the sulfate-reducing bacteria demand, is available to the metal-reducing bacteria. The inclusion of an initially small population of slow growing sulfate-reducing bacteria identified in proteomic analyses led to an additional source of Fe(II) from the dissolution of Fe(III) minerals promoted by biogenic sulfide. The falling water table during the experiment significantly reduced the saturated thickness of the aquifer and resulted in reactants and products, as well as unmitigated uranium, in the newly unsaturated vadose zone. High permeability sandy gravel structures resulted in locally high flow rates in the vicinity of injection wells that increased acetate dilution. In downgradient locations, these structures created preferential flow paths for acetate delivery that enhanced local zones of TEAP reactivity and subsidiary reactions. Conversely, smaller transport rates associated with the lower permeability lithofacies (e.g., fine) and vadose zone were shown to limit acetate access and reaction. Once accessed by acetate, however, these same zones limited subsequent acetate dilution and provided longer residence times that resulted in higher concentrations of TEAP reaction products when terminal electron donors and acceptors were not limiting. Finally, facies-based porosity and reactive surface area variations were shown to affect aqueous uranium concentration distributions with localized effects of the fine lithofacies having the largest impact on U(VI) surface complexation. The ability to model the comprehensive biogeochemical reaction network, and spatially and temporally variable processes, properties, and conditions controlling uranium behavior during engineered bioremediation in the naturally complex Rifle IFRC subsurface system required a subsurface simulator that could use the large memory and computational performance of a massively parallel computer. In this case, the eSTOMP simulator, operating on 128 processor cores for 12h, was used to simulate the 110-day field experiment and 50 days of post-biostimulation behavior.


Water Resources Research | 2008

Building conceptual models of field‐scale uranium reactive transport in a dynamic vadose zone‐aquifer‐river system

Steven B. Yabusaki; Yilin Fang; Scott R. Waichler

[1]xa0Subsurface simulation is used to build, test, and couple conceptual process models to better understand the persistence of uranium concentrations above federal drinking water standards in a 0.4 km by 1.0 km groundwater plume beneath the 300 Area of the U.S. Department of Energys Hanford Site in eastern Washington State. At this location, the unconfined aquifer and the variably saturated lower vadose zone sediments are subject to significant variations in water levels driven by diurnal, weekly, and seasonal fluctuations in the Columbia River stage. In the near-river aquifer, uranium-contaminated sediments in the highly transmissive Hanford formation are subject to high groundwater velocities, daily flow reversals, and exposure to river water. One- and two-dimensional simulations of variably saturated flow and reactive transport based on laboratory-derived models of uranium sorption are used to assess the representation of uranium transport processes in the vadose zone-aquifer-river system. The simulations show that the various frequencies of river stage fluctuation are capable of driving significant inland transport above the average water table, which is in contrast to the net groundwater flow to the river. Inclusion of a rate-limited uranium mass transfer process model is notably more important to the timescales of the river stage-driven groundwater flow than for vadose zone flow driven by natural recharge. Spatially and temporally variable solution chemistry from the dynamic exchange of river water and groundwater in the unconfined aquifer is shown to significantly alter uranium mobility as represented by a multicomponent uranium surface complexation model.


Archive | 2005

Flow and Transport in the Hanford 300 Area Vadose Zone-Aquifer-River System

Scott R. Waichler; Steven B. Yabusaki

Contaminant migration in the 300 Area unconfined aquifer is strongly coupled to fluctuations in the Columbia River stage. To better understand the interaction between the river, aquifer, and vadose zone, a 2-D saturated-unsaturated flow and transport model was developed for a vertical cross-section aligned west-east across the Hanford Site 300 Area, nearly perpendicular to the river. The model was used to investigate water flow and tracer transport in the vadose zone-aquifer-river flow system, in support of the ongoing study of the 300 Area uranium plume. The STOMP simulator was used to model 1-year from 3/1/92 to 2/28/93, a period when hourly data were available for both groundwater and river levels. Net water flow to the river (per 1-meter width of shoreline) was 182 m3/y in the base case, but the cumulative exchange or total flow back and forth across the riverbed was 30 times greater. The low river case had approximately double the net water and Groundwater tracer flux into the river as compared to the base case.


Environmental Science & Technology | 2017

Water Table Dynamics and Biogeochemical Cycling in a Shallow, Variably-Saturated Floodplain

Steven B. Yabusaki; Michael J. Wilkins; Yilin Fang; Kenneth H. Williams; Bhavna Arora; John R. Bargar; Harry R. Beller; Nicholas J. Bouskill; Eoin L. Brodie; John N. Christensen; Mark E. Conrad; Robert E. Danczak; Eric King; Mohamad Reza Soltanian; Nicolas Spycher; Carl I. Steefel; Tetsu K. Tokunaga; Roelof Versteeg; Scott R. Waichler; Haruko M. Wainwright

Three-dimensional variably saturated flow and multicomponent biogeochemical reactive transport modeling, based on published and newly generated data, is used to better understand the interplay of hydrology, geochemistry, and biology controlling the cycling of carbon, nitrogen, oxygen, iron, sulfur, and uranium in a shallow floodplain. In this system, aerobic respiration generally maintains anoxic groundwater below an oxic vadose zone until seasonal snowmelt-driven water table peaking transports dissolved oxygen (DO) and nitrate from the vadose zone into the alluvial aquifer. The response to this perturbation is localized due to distinct physico-biogeochemical environments and relatively long time scales for transport through the floodplain aquifer and vadose zone. Naturally reduced zones (NRZs) containing sediments higher in organic matter, iron sulfides, and non-crystalline U(IV) rapidly consume DO and nitrate to maintain anoxic conditions, yielding Fe(II) from FeS oxidative dissolution, nitrite from denitrification, and U(VI) from nitrite-promoted U(IV) oxidation. Redox cycling is a key factor for sustaining the observed aquifer behaviors despite continuous oxygen influx and the annual hydrologically induced oxidation event. Depth-dependent activity of fermenters, aerobes, nitrate reducers, sulfate reducers, and chemolithoautotrophs (e.g., oxidizing Fe(II), S compounds, and ammonium) is linked to the presence of DO, which has higher concentrations near the water table.


Environmental Modelling and Software | 2014

A high-performance workflow system for subsurface simulation

Vicky L. Freedman; Xingyuan Chen; Stefan Finsterle; Mark D. Freshley; Ian Gorton; Luke J. Gosink; Elizabeth H. Keating; Carina S. Lansing; William A.M. Moeglein; Christopher J. Murray; George Shu Heng Pau; Ellen A. Porter; Sumit Purohit; Mark L. Rockhold; Karen L. Schuchardt; Chandrika Sivaramakrishnan; Velimir Vessilinov; Scott R. Waichler

The U.S. Department of Energy (DOE) recently invested in developing a numerical modeling toolset called ASCEM (Advanced Simulation Capability for Environmental Management) to support modeling analyses at legacy waste sites. This investment includes the development of an open-source user environment called Akuna that manages subsurface simulation workflows. Core toolsets accessible through the Akuna user interface include model setup, grid generation, sensitivity analysis, model calibration, and uncertainty quantification. Additional toolsets are used to manage simulation data and visualize results. This new workflow technology is demonstrated by streamlining model setup, calibration, and uncertainty analysis using high performance computation for the BC Cribs Site, a legacy waste area at the Hanford Site in Washington State. For technetium-99 transport, the uncertainty assessment for potential remedial actions (e.g., surface infiltration covers) demonstrates that using multiple realizations of the geologic conceptual model results in greater variation in concentration predictions than when a single model is used. Akuna provides integrated toolset needed for subsurface modeling workflow.Akuna streamlines process of executing multiple simulations in HPC environment.Akuna provides visualization tools for spatial and temporal data.Example application demonstrates risk with remediation impacting infiltration rates.


Archive | 2004

Evaluation of Xenon Gas Detection as a Means for Identifying Buried Transuranic Waste at the Radioactive Waste Management Complex, Idaho National Environmental and Engineering Laboratory

P Evan Dresel; Scott R. Waichler

Xenon is produced as a fission product in nuclear reactors and through spontaneous fission of some transuranic (TRU) isotopes. Xenon gas is nearly inert and will be released from buried TRU waste. This document describes and evaluates the potential for analyzing xenon isotopes in soil gas to detect TRU waste in the subsurface at the Idaho National Environmental and Engineering Laboratorys Radioactive Waste Management Complex.


Archive | 2003

Transient Inverse Calibration of the Site-Wide Groundwater Flow Model (ACM-2): FY03 Progress Report

Vince R. Vermeul; Marcel P. Bergeron; Colleen Cole; Christopher J. Murray; William E. Nichols; Timothy D. Scheibe; Paul D. Thorne; Scott R. Waichler; YuLong Xie

DOE and PNNL are working to strengthen the technical defensibility of the groundwater flow and transport model at the Hanford Site and to incorporate uncertainty into the model. One aspect of the initiative is developing and using a three-dimensional transient inverse model to estimate the hydraulic conductivities, specific yields, and other parameters using data from Hanford since 1943. The focus of the alternative conceptual model (ACM-2) inverse modeling initiative documented in this report was to address limitations identified in the ACM-1 model, complete the facies-based approach for representing the hydraulic conductivity distribution in the Hanford and middle Ringold Formations, develop the approach and implementation methodology for generating multiple ACMs based on geostatistical data analysis, and develop an approach for inverse modeling of these stochastic ACMs. The primary modifications to ACM-2 transient inverse model include facies-based zonation of Units 1 (Hanford ) and 5 (middle Ringold); an improved approach for handling run-on recharge from upland areas based on watershed modeling results; an improved approach for representing artificial discharges from site operations; and minor changes to the geologic conceptual model. ACM-2 is the first attempt to fully incorporate the facies-based approach to represent the hydrogeologic structure. Further refinement and additional improvements tomorexa0» overall model fit will be realized during future inverse simulations of groundwater flow and transport. In addition, preliminary work was completed on an approach and implementation for generating an inverse modeling of stochastic ACMs. These techniques were applied to assess the uncertainty in the facies-based zonation of the Hanford formation and the geological structure of Ringold mud units. The geostatistical analysis used a preliminary interpretation of the facies-based zonation that was not consistent with that used in ACM-2. Although the overall objective of this task is to assess uncertainty based on the most current model (ACM-2), this preliminary work provided an effective basis for developing the approach and implementation methodology. A strategy was developed to facilitate inverse calibration analysis of the large number of stochastic ACMs generated. These stochastic ACMs are random selections from a range of possible model structures, all of which are consistent with available observations. However, a single inverse run requires many forward flow model runs, and full inverse analysis of the large number of combinations of stochastic alternative models is not now computationally feasible. Thus, a two-part approach was developed: (1) full inverse modeling of selected realizations combined with limited forward modeling and (2) implementation of the UCODE/CFEST inverse modeling framework to enhance computational capabilities.«xa0less


Archive | 2004

2004 Initial Assessments of Closure for the S-SX Tank Farm: Numerical Simulations

Z. F. Zhang; Vicky L. Freedman; Scott R. Waichler; Mark D. White

In support of CH2M HILL Hanford Group, Inc.s (CHG) preparation of a Field Investigative Report (FIR) for the closure of the Hanford Site Single-Shell Tank (SST) Waste Management Area (WMA) tank farms, a set of numerical simulations of flow and solute transport was executed to investigate different potential contaminant source scenarios that may pose long-term risks to groundwater from the closure of the S-SX Tank Farm. This report documents the simulation of 7 cases (plus two verification) involving two-dimensional cross sections through the S Tank Farm (Tanks S-101, S102, and S-103) and the simulation of one case involving three-dimensional domain of the S Tank Farm. Using a unit release scenario at Tank S-103, three different types of leaks were simulated. These simulations assessed the effect of leaks during retrieval as well as residual wastes and ancillary equipment after closure. Two transported solutes were considered: uranium-238 (U-238) and technetium-99 (Tc 99). To evaluate the effect of sorption on contaminant transport, six different sorption coefficients were simulated for U 238. Overall, simulations results for the S Tank Farm showed that only a small fraction (< 0.4%) of the U-238 with sorption coefficients uf0b3 0.6 mL/g migrated from the vadose zone in all of the cases. For the conservative solute, Tc-99, results showed that the simulations investigating leaks during retrieval demonstrated the highest peak concentrations and the earliest arrival times due to the high infiltration rate before water was added and surface barriers installed. Residual leaks were investigated with different release rate models, including uniform release, advection-dominated, diffusion-dominated, and saltcake (solubility-controlled) release models. Of the four models, peak concentrations were lowest and arrival times later for the uniform release model due to the lower release rate of the residual tank waste solids; similar high peak concentrations occurred for the advection-dominated and the salt cake models due to the higher release rate. For the tank ancillary equipment leak case, the diffusion-dominated release rate model yielded peak concentrations and arrival times that were similar to the majority of the past leak cases for residual tank wastes. Comparison between the results of the two-dimensional and those of the three-dimensional simulations show that the two-dimensional simulation significantly overestimated the peak concentrations of the contaminants by a factor of about 41 for Tc-99 and 37 for U-238 with sorption coefficient of 0.03 mL/g.


Archive | 2005

2005 Closure Assessments for WMA-C Tank Farms: Numerical Simulations

Vicky L. Freedman; Z. F. Zhang; Scott R. Waichler; Signe K. Wurstner

In support of CH2M HILL Hanford Group, Inc.s (CHG) closure of the Hanford Site Single-Shell Tank (SST) Waste Management Area (WMA) tank farms, numerical simulations of flow and solute transport were executed to investigate different potential contaminant source scenarios that may pose long-term risks to groundwater from the closure of the C Tank Farm. These simulations were based on the initial assessment effort (Zhang et al., 2003), but implemented a revised approach that examined a range of key parameters and multiple base cases. Four different potential source types were identified to represent the four base cases, and included past leaks, diffusion releases from residual wastes, leaks during retrieval, and ancillary equipment sources. Using a two-dimensional cross section through the C Tank Farm (Tanks C-103–C-112) and a unit release from Tank C-112, two solutes (uranium-238 (U-238) and technetium-99 (Tc 99)) were transported through the problem domain. To evaluate the effect of sorption on contaminant transport, seven different sorption coefficients were simulated for U 238. Apart from differences in source releases, all four base cases utilized the same median parameter values to describe flow and contaminant transport at the WMA C. Forty-six additional cases were also run that examined individual transport responses to the upper and lower limits of the median parameter values implemented in the base case systems. For the conservative solute, Tc-99, results amongst the base cases showed that the simulations investigating past leaks demonstrated the highest peak concentrations and the earliest arrival times (48 years) due to the proximity of the plume to the water table and the high recharge rate before surface barriers were installed. Simulations investigating leaks during retrieval predicted peak concentrations ~60 times smaller than the past leak cases, and corresponding arrival times that occurred ~70 years later. The diffusion release base case predicted the lowest peak concentrations and arrival times for all solutes. Even after 10,000 years of simulation, only 11.2% of the Tc-99 mass migrated past the fence line compliance point in the groundwater. Although ancillary equipment cases released the contaminant at a similar depth as the diffusion cases, nearly all of the Tc-99 (99.0%) exited the groundwater domain by the end of the simulation due to differences in release rates. These differences were also reflected in the peak arrival times, which were ~8,500 years for the diffusion base case, and ~3,700 years for the base ancillary equipment release. In the diffusion cases, peak concentration predictions were sensitive to the rate of diffusion, but had no impact on the peak concentration arrival times. The average peak concentration was ~3.2 times higher than the base case value for the upper estimate of diffusion, and 3.2 uf0b4 10-3 lower for the lower bounding estimate. The past leak, ancillary equipment and retrieval leak cases were sensitive to the estimate of the pre-barrier installment recharge rate. For example, on average for the past leaks, relative concentrations increased by ~2.2 times for the upper recharge estimate, and decreased by ~0.14 times for the lower bound. Faster arrival times were associated with the upper recharge estimate, and slower arrival times with the lower estimate. Similar trends in both predicted peaks and arrival times occurred for the ancillary equipment and retrieval leaks scenarios that investigated the uncertainty in the pre-barrier installment recharge rate. Uncertainty in the plume depth also impacted predicted peak concentrations and arrival times for the past leak scenario. Trends similar to the pre-barrier installment recharge rate resulted, with higher concentrations and earlier breakthroughs associated with a lower plume depth, and lower concentrations and later breakthroughs with a higher plume depth.


Archive | 2004

2004 Initial Assessments for the T and TX TY Tank Farm Field Investigation Report (FIR): Numerical Simulations

Z. F. Zhang; Vicky L. Freedman; Scott R. Waichler

In support of CH2M HILL Hanford Group, Inc.’s (CHG) preparation of a Field Investigative Report (FIR) for the Hanford Site Single-Shell Tank Waste Management Area (WMA) T and TX-TY, a suite of numerical simulations of flow and solute transport was executed using the STOMP code to predict the performance of surface barriers for reducing long-term risks from potential groundwater contamination at the T and TX-TY WMA. The scope and parametric data for these simulations were defined by a modeling data package provided by CHG. This report documents the simulation involving 2-D cross sections through the T Tank and the TX-TY Tank Farm. Eight cases were carried out for the cross sections to simulate the effects of interim barrier, water line leak, inventory distribution, and surface recharge on water flow and the transport of long-lived radionuclides (i.e., technecium-99 and uranium) and chemicals (i.e., nitrate and chromium For simulations with barriers, it is assumed that an interim barrier is in place by the year 2010. It was also assumed that, for all simulations, as part of tank farm closure, a closure barrier was in place by the year 2040. The modeling considers the estimated inventories of contaminants within the vadose zone andmorexa0» calculates the associated risk. It assumes that no tanks will leak in the future. Initial conditions for contaminant concentration are provided as part of inventory estimates for uranium, technetium-99, nitrate, and chromium. For moisture flow modeling, Neumann boundary conditions are prescribed at the surface with the flux equal to the recharge rate estimate. For transport modeling, a zero flux boundary is prescribed at the surface for uranium, technetium-99, nitrate, and chromium. The western and eastern boundaries are assigned no-flux boundaries for both flow and transport. The water table boundary is prescribed by water table elevations and the unconfined aquifer hydraulic gradient. No-flux boundaries are used for the lower boundary. Numerical results were obtained for compliance at the WMA boundary, 200 Areas boundary, exclusion boundary beyond the 200 Areas, and the Columbia River (DOE-RL 2000). Streamtube/analytical models were used to route computed contaminant concentrations at the water table to the downstream compliance points. When the interim barrier was applied at 2010, the soil was desaturated gradually. The difference in saturation of the soil with and without the interim barrier was the largest at 2040, the time the closure barrier was applied. After this, the difference in saturation in the two cases became smaller with time. Generally, the solutes broke though faster if there was a water line leak. A relative small five-day leak (Case 4) had little effect on the peak concentration, while a large 20-yr leak (Case 3) increased the peak concentration significantly and reduced the solute travel in the vadose zone. The distribution of the inventory, either uniform or nonuniform, has little effect on peak arrival time; the peak concentrations of the conservative solutes varied by -6.9 to 0.2% for the T tank farm and by 11 to 49.4% for the TX tank farm. The reduction of the meteoric recharge before the barrier was applied led to less soil saturation, as expected, and thus longer solute travel time in the vadose zone and smaller peak fence line concentration. The effect on soil saturation lasted for about another 50 years after the barrier was applied at 2050. However, the reduced recharge rate affected the breakthough curve till the end of the simulation. The fence line concentrations at the year 3000 were always higher for cases with reduced natural recharge than for those of the base case, which indicates that the fundamental impact of the reduced natural recharge is a smoothing of the breakthrough concentrations at the compliance points.«xa0less

Collaboration


Dive into the Scott R. Waichler's collaboration.

Top Co-Authors

Avatar

Steven B. Yabusaki

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Vicky L. Freedman

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Yilin Fang

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kenneth H. Williams

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Philip E. Long

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Murray

Battelle Memorial Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek R. Lovley

University of Massachusetts Boston

View shared research outputs
Top Co-Authors

Avatar

James A. Davis

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge