Scott S. Grieshaber
University of Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Scott S. Grieshaber.
Journal of Cell Science | 2003
Scott S. Grieshaber; Nicole A. Grieshaber; Ted Hackstadt
Chlamydiae are pathogenic obligate intracellular bacteria with a biphasic developmental cycle that involves cell types adapted for extracellular survival (elementary bodies, EBs) and intracellular multiplication (reticulate bodies, RBs). The intracellular development of chlamydiae occurs entirely within a membrane-bound vacuole termed an inclusion. Within 2 hours after entry into host cells, Chlamydia trachomatis EBs are trafficked to the perinuclear region of the host cell and remain in close proximity to the Golgi apparatus, where they begin to fuse with a subset of host vesicles containing sphingomyelin. Here, we provide evidence that chlamydial migration from the cell periphery to the peri-Golgi region resembles host cell vesicular trafficking. Chlamydiae move towards the minus end of microtubules and aggregate at the microtubule-organizing center (MTOC). In mammalian cells the most important minus-end-directed microtubule motor is cytoplasmic dynein. Microinjection of antibodies to a subunit of cytoplasmic dynein inhibited movement of chlamydiae to the MTOC, whereas microinjection of antibodies to the plus-directed microtubule motor, kinesin, had no effect. Surprisingly, overexpression of the protein p50 dynamitin, a subunit of the dynactin complex that links vesicular cargo to the dynein motor in minus directed vesicle trafficking, did not abrogate chlamydial migration even though host vesicle transport was inhibited. Nascent chlamydial inclusions did, however, colocalize with the p150(Glued) dynactin subunit, which suggests that p150(Glued) may be required for dynein activation or processivity but that the cargo-binding activity of dynactin, supplied by p50 dynamitin subunits and possibly other subunits, is not. Because chlamydial transcription and translation were required for this intracellular trafficking, chlamydial proteins modifying the cytoplasmic face of the inclusion membrane are probable candidates for proteins fulfilling this function.
Infection and Immunity | 2002
Reynaldo A. Carabeo; Scott S. Grieshaber; Elizabeth R. Fischer; Ted Hackstadt
ABSTRACT To elucidate the host cell machinery utilized by Chlamydia trachomatis to invade epithelial cells, we examined the role of the actin cytoskeleton in the internalization of chlamydial elementary bodies (EBs). Treatment of HeLa cells with cytochalasin D markedly inhibited the internalization of C. trachomatis serovar L2 and D EBs. Association of EBs with HeLa cells induced localized actin polymerization at the site of attachment, as visualized by either phalloidin staining of fixed cells or the active recruitment of GFP-actin in viable infected cells. The recruitment of actin to the specific site of attachment was accompanied by dramatic changes in the morphology of cell surface microvilli. Ultrastructural studies revealed a transient microvillar hypertrophy that was dependent upon C. trachomatis attachment, mediated by structural components on the EBs, and cytochalasin D sensitive. In addition, a mutant CHO cell line that does not support entry of C. trachomatis serovar L2 did not display such microvillar hypertrophy following exposure to L2 EBs, which is in contrast to infection with serovar D, to which it is susceptible. We propose that C. trachomatis entry is facilitated by an active actin remodeling process that is induced by the attachment of this pathogen, resulting in distinct microvillar reorganization throughout the cell surface and the formation of a pedestal-like structure at the immediate site of attachment and entry.
PLOS Pathogens | 2008
B. Josh Lane; Charla Mutchler; Souhaila Al Khodor; Scott S. Grieshaber; Rey A. Carabeo
Chlamydia trachomatis attachment to cells induces the secretion of the elementary body–associated protein TARP (Translocated Actin Recruiting Protein). TARP crosses the plasma membrane where it is immediately phosphorylated at tyrosine residues by unknown host kinases. The Rac GTPase is also activated, resulting in WAVE2 and Arp2/3-dependent recruitment of actin to the sites of chlamydia attachment. We show that TARP participates directly in chlamydial invasion activating the Rac-dependent signaling cascade to recruit actin. TARP functions by binding two distinct Rac guanine nucleotide exchange factors (GEFs), Sos1 and Vav2, in a phosphotyrosine-dependent manner. The tyrosine phosphorylation profile of the sequence YEPISTENIYESI within TARP, as well as the transient activation of the phosphatidylinositol 3-kinase (PI3-K), appears to determine which GEF is utilized to activate Rac. The first and second tyrosine residues, when phosphorylated, are utilized by the Sos1/Abi1/Eps8 and Vav2, respectively, with the latter requiring the lipid phosphatidylinositol 3,4,5-triphosphate. Depletion of these critical signaling molecules by siRNA resulted in inhibition of chlamydial invasion to varying degrees, owing to a possible functional redundancy of the two pathways. Collectively, these data implicate TARP in signaling to the actin cytoskeleton remodeling machinery, demonstrating a mechanism by which C. trachomatis invades non-phagocytic cells.
Infection and Immunity | 2005
Dawn R. Clifton; Cheryl A. Dooley; Scott S. Grieshaber; Reynaldo A. Carabeo; Kenneth A. Fields; Ted Hackstadt
ABSTRACT Chlamydiae are obligate intracellular pathogens that efficiently induce their endocytosis by susceptible eukaryotic host cells. Recently, a Chlamydia trachomatis type III secreted effector protein, Tarp, was found to be translocated and tyrosine phosphorylated at the site of entry and associated with the recruitment of actin that coincides with endocytosis. C. trachomatis Tarp possesses up to six direct repeats of approximately 50 amino acids each. The majority of the tyrosine residues are found within this repeat region. Here we have ectopically expressed distinct domains of Tarp in HeLa 229 cells and demonstrated that tyrosine phosphorylation occurs primarily within the repeat region, while recruitment of actin is mediated by the C-terminal domain of the protein. A comparison of other sequenced chlamydial genomes revealed that each contains an ortholog of Tarp, although Chlamydia muridarum, Chlamydophila caviae, and Chlamydophila pneumoniae Tarp lack the large repeat region. Immunofluorescence and immunoblotting using an antiphosphotyrosine antibody show no evidence of phosphotyrosine at the site of entry of C. muridarum, C. caviae, and C. pneumoniae, although each species similarly recruits actin. Ectopic expression of full-length C. trachomatis and C. caviae Tarp confirmed that both recruit actin but only C. trachomatis Tarp is tyrosine phosphorylated. The data indicate that the C-terminal domain of Tarp is essential for actin recruitment and that tyrosine phosphorylation may not be an absolute requirement for actin recruitment. The results further suggest the potential for additional, unknown signal transduction pathways associated specifically with C. trachomatis.
Traffic | 2004
Rey A. Carabeo; Scott S. Grieshaber; Aaron Hasenkrug; Cheryl A. Dooley; Ted Hackstadt
Chlamydiae are gram‐negative obligate intracellular pathogens to which access to an intracellular environment is paramount to their survival and replication. To this end, chlamydiae have evolved extremely efficient means of invading nonphagocytic cells. To elucidate the host cell machinery utilized by Chlamydia trachomatis in invasion, we examined the roles of the Rho GTPase family members in the internalization of chlamydial elementary bodies. Upon binding of elementary bodies on the cell surface, actin is rapidly recruited to the sites of internalization. Members of the Rho GTPase family are frequently involved in localized recruitment of actin. Clostridial Toxin B, which is a known enzymatic inhibitor of Rac, Cdc42 and Rho GTPases, significantly reduced chlamydial invasion of HeLa cells. Expression of dominant negative constructs in HeLa cells revealed that chlamydial uptake was dependent on Rac, but not on Cdc42 or RhoA. Rac but not Cdc42 was found to be activated by chlamydial attachment. The effect of dominant negative Rac expression on chlamydial uptake is manifested through the inhibition of actin recruitment to the sites of chlamydial entry. Studies utilizing Green Fluorescent Protein fusion constructs of Rac, Cdc42 and RhoA, showed Rac to be the sole member of the Rho GTPase family recruited to the site of chlamydial entry.
Molecular Microbiology | 2006
Nicole A. Grieshaber; Scott S. Grieshaber; Elizabeth R. Fischer; Ted Hackstadt
The chromatin of chlamydial elementary bodies (EBs) is stabilized by proteins with sequence homology to eukaryotic H1. These histone homologues, termed Hc1 and Hc2, are expressed only during the late stages of the chlamydial life cycle concomitant with the reorganization of reticulate bodies (RBs) into metabolically inactive EBs. Hc1 and Hc2 play a major role in establishment of nucleoid structure as well as in downregulation of gene expression as RBs differentiate back to EBs. The effects of Hc1 on gene expression patterns requires that chlamydiae strictly control Hc1 activity. Hc1 expression and activity are thus regulated transcriptionally as well as post‐transcriptionally. We describe here a small regulatory RNA (sRNA) that acts as an additional checkpoint to negatively regulate Hc1 synthesis. Coexpression of the sRNA with hctA, the gene that encodes Hc1, in Escherichia coli inhibited Hc1 translation but did not affect hctA mRNA transcription or stability. IhtA (inhibitor of hctA translation) was present only in purified RBs while Hc1 was present only in purified EBs. During infection IhtA, but not Hc1, was present in RBs and was downregulated while Hc1 was upregulated upon RB to EB differentiation. Thus, we propose that IhtA is part of a global regulatory circuit that controls differentiation of RBs to EBs during the chlamydial life cycle.
Cellular Microbiology | 2002
Scott S. Grieshaber; Joel A. Swanson; Ted Hackstadt
Chlamydia trachomatis is an obligate intracellular bacterium with a biphasic life cycle that takes place entirely within a membrane‐bound vacuole termed an inclusion. The chlamydial inclusion is non‐fusogenic with endosomal or lysosomal compartments but intersects a pathway involved in transport of sphingomyelin from the Golgi apparatus to the plasma membrane. The physical conditions within the mature chlamydial inclusion are unknown. We used ratiometric imaging with membrane‐permeant, ion‐selective fluorescent dyes for microanalyis of the physical environment within the inclusion. Determination of H+, Na+, K+ and Ca2+ concentrations using CFDA (carboxy fluorescein diacetate) or BCECF‐AM (2′,7′‐bis (2‐carboxyethyl)‐5,6‐carboxyfluorescein acetoxymethyl ester, SBFI‐AM, PBFI‐AM and fura‐PE3‐acetomethoxyester (Fura‐PE3‐AM), respectively, indicated that all ions assayed within the lumenal space of the inclusion approximated the concentrations within the cytoplasm. Stimulation of purinergic receptors by addition of extracellular ATP triggered a dynamic Ca2+ response that occurred simultaneously within the cytoplasm and interior of the inclusion. The chlamydial inclusion thus appears to be freely permeable to cytoplasmic ions. These results have implications for nutrient acquisition by chlamydiae and may contribute to the non‐fusogenicity of the inclusion with endocytic compartments.
Traffic | 2006
Scott S. Grieshaber; Nicole A. Grieshaber; Natalie J. Miller; Ted Hackstadt
Chlamydiae traffic along microtubules to the microtubule organizing center (MTOC) to establish an intracellular niche within the host cell. Trafficking to the MTOC is dynein dependent although the activating and cargo‐linking function of the dynactin complex is supplanted by unknown chlamydial protein(s). We demonstrate that once localized to the MTOC, the chlamydial inclusion maintains a tight association with cellular centrosomes. This association is sustained through mitosis and leads to a significant increase in supernumerary centrosomes, abnormal spindle poles, and chromosomal segregation defects. Chlamydial infection thus can lead to chromosome instability in cells that recover from infection.
Cellular Microbiology | 2007
Rey A. Carabeo; Cheryl A. Dooley; Scott S. Grieshaber; Ted Hackstadt
Chlamydiae are Gram‐negative obligate intracellular pathogens to which access to an intracellular environment is fundamental to their development. Chlamydial attachment to host cells induces the activation of the Rac GTPase, which is required for the localization of WAVE2 at the sites of chlamydial entry. Co‐immunoprecipitation experiments demonstrated that Chlamydia trachomatis infection promoted the interaction of Rac with WAVE2 and Abi‐1, but not with IRSp53. siRNA depletion of WAVE2 and Abi‐1 abrogated chlamydia‐induced actin recruitment and significantly reduced the uptake of the pathogen by the depleted cells. Chlamydia invasion also requires the Arp2/3 complex as demonstrated by its localization to the sites of chlamydial attachment and the reduced efficiency of chlamydial invasion in cells overexpressing the VCA domain of the neural Wiskott–Aldrich syndrome protein. Thus, C. trachomatis activates Rac and promotes its interaction with WAVE2 and Abi‐1 to activate the Arp2/3 complex resulting in the induction of actin cytoskeletal rearrangements that are required for invasion.
Infection and Immunity | 2003
Ronald S. Harlander; Michael Way; Qun Ren; Dale Howe; Scott S. Grieshaber; Robert A. Heinzen
ABSTRACT Neuronal Wiskott-Aldrich syndrome protein (N-WASP) and the actin-related protein 2/3 (Arp2/3) complex have emerged as critical host proteins that regulate pathogen actin-based motility. Actin tail formation and motility in Listeria monocytogenes require the Arp2/3 complex but bypasses N-WASP signaling. Motility of Shigella flexneri and vaccinia virus requires both N-WASP and the Arp2/3 complex. Functional roles for these cytoskeletal regulatory proteins in actin-based motility of Rickettsia rickettsii have not been established. In this study, functional domains of N-WASP tagged with green fluorescent protein that have characterized effects on Shigella and vaccinia virus actin-based motility were ectopically expressed in HeLa cells infected with R. rickettsii to assess their effects on rickettsial motility. S. flexneri-infected cells were used as a control. Expressed N-WASP domains did not localize to R. rickettsii or their actin tails. Expression of N-WASP missing the VCA domain (for “verprolin homology, cofilin homology, and acidic domains”), which acts as a dominant-negative form of N-WASP, completely inhibited actin-based motility of S. flexneri while only moderately inhibiting motility of R. rickettsii. Similarly, expression of the VCA domain, which acts as a dominant-negative with respect to Arp2/3 complex function, severely inhibited actin-based motility of S. flexneri (no motility observed in the majority of expressing cells) but only moderately inhibited R. rickettsii motility. These results, taken together with the differential effects on motility observed upon expression of other N-WASP domains, suggest that actin-based motility of R. rickettsii is independent of N-WASP and the Arp2/3 complex.