Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott T. Laughlin is active.

Publication


Featured researches published by Scott T. Laughlin.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Copper-free click chemistry for dynamic in vivo imaging

Jeremy M. Baskin; Jennifer A. Prescher; Scott T. Laughlin; Nicholas J. Agard; Pamela V. Chang; Isaac A. Miller; Anderson Lo; Julian A. Codelli; Carolyn R. Bertozzi

Dynamic imaging of proteins in live cells is routinely performed by using genetically encoded reporters, an approach that cannot be extended to other classes of biomolecules such as glycans and lipids. Here, we report a Cu-free variant of click chemistry that can label these biomolecules rapidly and selectively in living systems, overcoming the intrinsic toxicity of the canonical Cu-catalyzed reaction. The critical reagent, a substituted cyclooctyne, possesses ring strain and electron-withdrawing fluorine substituents that together promote the [3 + 2] dipolar cycloaddition with azides installed metabolically into biomolecules. This Cu-free click reaction possesses comparable kinetics to the Cu-catalyzed reaction and proceeds within minutes on live cells with no apparent toxicity. With this technique, we studied the dynamics of glycan trafficking and identified a population of sialoglycoconjugates with unexpectedly rapid internalization kinetics.


Science | 2008

In vivo imaging of membrane-associated glycans in developing zebrafish.

Scott T. Laughlin; Jeremy M. Baskin; Sharon L. Amacher; Carolyn R. Bertozzi

Glycans are attractive targets for molecular imaging but have been inaccessible because of their incompatibility with genetically encoded reporters. We demonstrated the noninvasive imaging of glycans in live developing zebrafish, using a chemical reporter strategy. Zebrafish embryos were treated with an unnatural sugar to metabolically label their cell-surface glycans with azides. Subsequently, the embryos were reacted with fluorophore conjugates by means of copper-free click chemistry, enabling the visualization of glycans in vivo at subcellular resolution during development. At 60 hours after fertilization, we observed an increase in de novo glycan biosynthesis in the jaw region, pectoral fins, and olfactory organs. Using a multicolor detection strategy, we performed a spatiotemporal analysis of glycan expression and trafficking and identified patterns that would be undetectable with conventional molecular imaging approaches.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Imaging the glycome

Scott T. Laughlin; Carolyn R. Bertozzi

Molecular imaging enables visualization of specific molecules in vivo and without substantial perturbation to the target molecules environment. Glycans are appealing targets for molecular imaging but are inaccessible with conventional approaches. Classic methods for monitoring glycans rely on molecular recognition with probe-bearing lectins or antibodies, but these techniques are not well suited to in vivo imaging. In an emerging strategy, glycans are imaged by metabolic labeling with chemical reporters and subsequent ligation to fluorescent probes. This technique has enabled visualization of glycans in living cells and in live organisms such as zebrafish. Molecular imaging with chemical reporters offers a new avenue for probing changes in the glycome that accompany development and disease.


Nature Protocols | 2007

Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation

Scott T. Laughlin; Carolyn R. Bertozzi

Metabolic labeling of glycans with a bioorthogonal chemical reporter such as the azide enables their visualization in cells and organisms as well as the enrichment of specific glycoprotein types for proteomic analysis. This process involves two steps. Azido sugars are fed to cells or organisms and integrated by the glycan biosynthetic machinery into various glycoconjugates. The azido sugars are then covalently tagged with imaging probes or epitope tags, either ex vivo or in vivo, using an azide-specific reaction. This protocol details the syntheses of the azido sugars N-azidoacetylmannosamine (ManNAz), N-azidoacetylgalactosamine (GalNAz), N-azidoacetylglucosamine (GlcNAz) and 6-azidofucose (6AzFuc), and the detection reagents phosphine-FLAG and phosphine-FLAG-His6. Applications to the visualization of cellular glycans and enrichment of glycoproteins for proteomic analysis are described. The synthesis of the azido sugars (ManNAz, GalNAz, GlcNAz or 6AzFuc) or detection reagents (phosphine-FLAG or phosphine-FLAG-His6) can be completed in approximately 1 week. A cell metabolic labeling experiment can be completed in approximately 4 d.


ACS Chemical Biology | 2009

In vivo imaging of Caenorhabditis elegans glycans.

Scott T. Laughlin; Carolyn R. Bertozzi

The nematode Caenorhabditis elegans is an excellent model organism for studies of glycan dynamics, a goal that requires tools for imaging glycans in vivo. Here we applied the bioorthogonal chemical reporter technique for the molecular imaging of mucin-type O-glycans in live C. elegans. We treated worms with azidosugar variants of N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), and N-acetylmannosamine (ManNAc), resulting in the metabolic labeling of their cell-surface glycans with azides. Subsequently, the worms were reacted via copper-free click reaction with fluorophore-conjugated difluorinated cyclooctyne (DIFO) reagents. We identified prominent localization of mucins in the pharynx of all four larval stages, in the adult hermaphrodite pharynx, vulva and anus, and in the tail of the adult male. Using a multicolor, time-resolved imaging strategy, we found that the distribution and dynamics of the glycans varied anatomically and with respect to developmental stage.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Visualizing enveloping layer glycans during zebrafish early embryogenesis

Jeremy M. Baskin; Karen W. Dehnert; Scott T. Laughlin; Sharon L. Amacher; Carolyn R. Bertozzi

Developmental events can be monitored at the cellular and molecular levels by using noninvasive imaging techniques. Among the biomolecules that might be targeted for imaging analysis, glycans occupy a privileged position by virtue of their primary location on the cell surface. We previously described a chemical method to image glycans during zebrafish larval development; however, we were unable to detect glycans during the first 24 hours of embryogenesis, a very dynamic period in development. Here we report an approach to the imaging of glycans that enables their visualization in the enveloping layer during the early stages of zebrafish embryogenesis. We microinjected embryos with azidosugars at the one-cell stage, allowed the zebrafish to develop, and detected the metabolically labeled glycans with copper-free click chemistry. Mucin-type O-glycans could be imaged as early as 7 hours postfertilization, during the gastrula stage of development. Additionally, we used a nonmetabolic approach to label sialylated glycans with an independent chemistry, enabling the simultaneous imaging of these two distinct classes of glycans. Imaging analysis of glycan trafficking revealed dramatic reorganization of glycans on the second time scale, including rapid migration to the cleavage furrow of mitotic cells. These studies yield insight into the biosynthesis and dynamics of glycans in the enveloping layer during embryogenesis and provide a platform for imaging other biomolecular targets by microinjection of appropriately functionalized biosynthetic precursors.


Methods in Enzymology | 2006

Metabolic Labeling of Glycans with Azido Sugars for Visualization and Glycoproteomics

Scott T. Laughlin; Nicholas J. Agard; Jeremy M. Baskin; Isaac Carrico; Pamela V. Chang; Anjali S. Ganguli; Matthew J. Hangauer; Anderson Lo; Jennifer A. Prescher; Carolyn R. Bertozzi

The staggering complexity of glycans renders their analysis extraordinarily difficult, particularly in living systems. A recently developed technology, termed metabolic oligosaccharide engineering, enables glycan labeling with probes for visualization in cells and living animals, and enrichment of specific glycoconjugate types for proteomic analysis. This technology involves metabolic labeling of glycans with a specifically reactive, abiotic functional group, the azide. Azido sugars are fed to cells and integrated by the glycan biosynthetic machinery into various glycoconjugates. The azido sugars are then covalently tagged, either ex vivo or in vivo, using one of two azide-specific chemistries: the Staudinger ligation, or the strain-promoted [3+2] cycloaddition. These reactions can be used to tag glycans with imaging probes or epitope tags, thus enabling the visualization or enrichment of glycoconjugates. Applications to noninvasive imaging and glycoproteomic analyses are discussed.


ACS Chemical Biology | 2011

Metabolic Labeling of Fucosylated Glycans in Developing Zebrafish

Karen W. Dehnert; Brendan J. Beahm; Thinh T. Huynh; Jeremy M. Baskin; Scott T. Laughlin; Wei Wang; Peng Wu; Sharon L. Amacher; Carolyn R. Bertozzi

Many developmental processes depend on proper fucosylation, but this post-translational modification is difficult to monitor in vivo. Here we applied a chemical reporter strategy to visualize fucosylated glycans in developing zebrafish. Using azide-derivatized analogues of fucose, we metabolically labeled cell-surface glycans and then detected the incorporated azides via copper-free click chemistry with a difluorinated cyclooctyne probe. We found that the fucose salvage pathway enzymes are expressed during zebrafish embryogenesis but that they process the azide-modified substrates inefficiently. We were able to bypass the salvage pathway by using an azide-functionalized analogue of GDP-fucose. This nucleotide sugar was readily accepted by fucosyltransferases and provided robust cell-surface labeling of fucosylated glycans, as determined by flow cytometry and confocal microscopy analysis. We used this technique to image fucosylated glycans in the enveloping layer of zebrafish embryos during the first 5 days of development. This work provides a method to study the biosynthesis of fucosylated glycans in vivo.


ChemBioChem | 2012

Imaging the Sialome during Zebrafish Development with Copper-Free Click Chemistry

Karen W. Dehnert; Jeremy M. Baskin; Scott T. Laughlin; Brendan J. Beahm; Natasha Naidu; Sharon L. Amacher; Carolyn R. Bertozzi

The sialome comprises sialylated glycoproteins and glycolipids that play essential roles in cell-cell communication. Using azide-modified molecular precursors of sialic acids and copper-free click chemistry, we visualized the spatiotemporal dynamics of the sialome in live zebrafish embryos.


Journal of the American Chemical Society | 2008

Conditional glycosylation in eukaryotic cells using a biocompatible chemical inducer of dimerization.

Jennifer L. Czlapinski; Michael W. Schelle; Lawrence W. Miller; Scott T. Laughlin; Jennifer J. Kohler; Virginia W. Cornish; Carolyn R. Bertozzi

Chemical inducers of dimerization (CIDs) are cell-permeable small molecules capable of dimerizing two protein targets. The most widely used CID, the natural product rapamycin and its relatives, is immunosuppressive due to interactions with endogenous targets and thus has limited utility in vivo. Here we report a new biocompatible CID, Tmp-SLF, which dimerizes E. coli DHFR and FKBP and has no endogenous mammalian targets that would lead to unwanted in vivo side effects. We employed Tmp-SLF to modulate gene expression in a yeast three-hybrid assay. Finally, we engineered the Golgi-resident glycosyltransferase FucT7 for tunable control by Tmp-SLF in mammalian cells.

Collaboration


Dive into the Scott T. Laughlin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer J. Kohler

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isaac Carrico

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge